Results 1 
3 of
3
On the Law of Addition of Random Matrices
 COMMUNICATIONS IN MATHEMATICAL PHYSICS
, 2000
"... Normalized eigenvalue counting measure of the sum of two Hermitian (or real symmetric) matrices An and Bn rotated independently with respect to each other by the random unitary (or orthogonal) Haar distributed matrix Un (i.e. An + U ∗ n BnUn) is studied in the limit of large matrix order n. Converg ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Normalized eigenvalue counting measure of the sum of two Hermitian (or real symmetric) matrices An and Bn rotated independently with respect to each other by the random unitary (or orthogonal) Haar distributed matrix Un (i.e. An + U ∗ n BnUn) is studied in the limit of large matrix order n. Convergence in probability to a limiting nonrandom measure is established. A functional equation for the Stieltjes transform of the limiting measure in terms of limiting eigenvalue measures of An and Bn is obtained and studied.
A simple approach to global regime of the random matrix theory
 Mathematical Results in Statistical Mechanics. Singapore: World Scientific
, 1999
"... Abstract. We discuss a method of the asymptotic computation of moments of the normalized eigenvalue counting measure of random matrices of large order. The method is based on the resolvent identity and on some formulas relating expectations of certain matrix functions and the expectations including ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Abstract. We discuss a method of the asymptotic computation of moments of the normalized eigenvalue counting measure of random matrices of large order. The method is based on the resolvent identity and on some formulas relating expectations of certain matrix functions and the expectations including their derivatives or, equivalently, on some simple formulas of the perturbation theory. In the framework of this unique approach we obtain functional equations for the Stieltjes transforms of the limiting normalized eigenvalue counting measure and the bounds for the rate of convergence for the majority known random matrix ensembles. 1.