Results 11  20
of
3,257
Movementassisted sensor deployment
, 2006
"... Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile senso ..."
Abstract

Cited by 247 (13 self)
 Add to MetaCart
Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile sensors to get high coverage. Based on Voronoi diagrams, we design two sets of distributed protocols for controlling the movement of sensors, one favoring communication and one favoring movement. In each set of protocols, we use Voronoi diagrams to detect coverage holes and use one of three algorithms to calculate the target locations of sensors if holes exist. Simulation results show the effectiveness of our protocols and give insight on choosing protocols and calculation algorithms under different application requirements and working conditions.
Fast maximum margin matrix factorization for collaborative prediction
 In Proceedings of the 22nd International Conference on Machine Learning (ICML
, 2005
"... Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to lowrank approximations and standard factor models. MMMF can be formulated as a semidefinite programming (SDP) and learned using standard SDP solvers. However, cu ..."
Abstract

Cited by 241 (8 self)
 Add to MetaCart
(Show Context)
Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to lowrank approximations and standard factor models. MMMF can be formulated as a semidefinite programming (SDP) and learned using standard SDP solvers. However, current SDP solvers can only handle MMMF problems on matrices of dimensionality up to a few hundred. Here, we investigate a direct gradientbased optimization method for MMMF and demonstrate it on large collaborative prediction problems. We compare against results obtained by Marlin (2004) and find that MMMF substantially outperforms all nine methods he tested. 1.
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
 J. Comput. Chem
"... and multithreading ..."
Widecoverage efficient statistical parsing with CCG and loglinear models
 COMPUTATIONAL LINGUISTICS
, 2007
"... This paper describes a number of loglinear parsing models for an automatically extracted lexicalized grammar. The models are "full" parsing models in the sense that probabilities are defined for complete parses, rather than for independent events derived by decomposing the parse tree. Dis ..."
Abstract

Cited by 220 (43 self)
 Add to MetaCart
(Show Context)
This paper describes a number of loglinear parsing models for an automatically extracted lexicalized grammar. The models are "full" parsing models in the sense that probabilities are defined for complete parses, rather than for independent events derived by decomposing the parse tree. Discriminative training is used to estimate the models, which requires incorrect parses for each sentence in the training data as well as the correct parse. The lexicalized grammar formalism used is Combinatory Categorial Grammar (CCG), and the grammar is automatically extracted from CCGbank, a CCG version of the Penn Treebank. The combination of discriminative training and an automatically extracted grammar leads to a significant memory requirement (over 20 GB), which is satisfied using a parallel implementation of the BFGS optimisation algorithm running on a Beowulf cluster. Dynamic programming over a packed chart, in combination with the parallel implementation, allows us to solve one of the largestscale estimation problems in the statistical parsing literature in under three hours. A key component of the parsing system, for both training and testing, is a Maximum Entropy supertagger which assigns CCG lexical categories to words in a sentence. The supertagger makes the discriminative training feasible, and also leads to a highly efficient parser. Surprisingly,
StyleBased Inverse Kinematics
, 2004
"... This paper presents an inverse kinematics system based on a learned model of human poses. Given a set of constraints, our system can produce the most likely pose satisfying those constraints, in realtime. Training the model on different input data leads to different styles of IK. The model is repres ..."
Abstract

Cited by 212 (9 self)
 Add to MetaCart
This paper presents an inverse kinematics system based on a learned model of human poses. Given a set of constraints, our system can produce the most likely pose satisfying those constraints, in realtime. Training the model on different input data leads to different styles of IK. The model is represented as a probability distribution over the space of all possible poses. This means that our IK system can generate any pose, but prefers poses that are most similar to the space of poses in the training data. We represent the probability with a novel model called a Scaled Gaussian Process Latent Variable Model. The parameters of the model are all learned automatically; no manual tuning is required for the learning component of the system. We additionally describe a novel procedure for interpolating between styles. Our stylebased
Numerical methods for image registration
, 2004
"... In this paper we introduce a new framework for image registration. Our formulation is based on consistent discretization of the optimization problem coupled with a multigrid solution of the linear system which evolve in a GaussNewton iteration. We show that our discretization is helliptic independ ..."
Abstract

Cited by 207 (28 self)
 Add to MetaCart
(Show Context)
In this paper we introduce a new framework for image registration. Our formulation is based on consistent discretization of the optimization problem coupled with a multigrid solution of the linear system which evolve in a GaussNewton iteration. We show that our discretization is helliptic independent of parameter choice and therefore a simple multigrid implementation can be used. To overcome potential large nonlinearities and to further speed up computation, we use a multilevel continuation technique. We demonstrate the efficiency of our method on a realistic highly nonlinear registration problem. 1 Introduction and problem setup Image registration is one of today’s challenging image processing problems. Given a socalled reference R and a socalled template image T, the basic idea is to find a “reasonable ” transformation such that a transformed version of the template image becomes “similar ” to the reference image. Image registration
Distributed average consensus with leastmeansquare deviation
 Journal of Parallel and Distributed Computing
, 2005
"... We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted averag ..."
Abstract

Cited by 202 (5 self)
 Add to MetaCart
(Show Context)
We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted average of its neighbors ’ values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus can be measured by the total meansquare deviation of the individual variables from their average, which converges to a steadystate value. We consider the problem of finding the (symmetric) edge weights that result in the least meansquare deviation in steady state. We show that this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational methods for solving this problem, and compare the weights and the meansquare deviations obtained by this method and several other weight design methods.
Algorithms and applications for approximate nonnegative matrix factorization
 Computational Statistics and Data Analysis
, 2006
"... In this paper we discuss the development and use of lowrank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both spars ..."
Abstract

Cited by 199 (7 self)
 Add to MetaCart
(Show Context)
In this paper we discuss the development and use of lowrank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both sparsity and smoothness constraints for the resulting nonnegative matrix factors are discussed. The interpretability of NMF outputs in specific contexts are provided along with opportunities for future work in the modification of NMF algorithms for largescale and timevarying datasets. Key words: nonnegative matrix factorization, text mining, spectral data analysis, email surveillance, conjugate gradient, constrained least squares.
Spacetime faces: High resolution capture for modeling and animation
 IN ACM TRANSACTIONS ON GRAPHICS (PROC. OF ACM SIGGRAPH)
, 2004
"... We present an endtoend system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stere ..."
Abstract

Cited by 192 (8 self)
 Add to MetaCart
We present an endtoend system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stereo algorithm is introduced to compute depth maps accurately and overcome overfitting deficiencies in prior work. A new template fitting and tracking procedure fills in missing data and yields point correspondence across the entire sequence without using markers. We demonstrate a datadriven, interactive method for inverse kinematics that draws on the large set of fitted templates and allows for posing new expressions by dragging surface points directly. Finally, we describe new tools that model the dynamics in the input sequence to enable new animations, created via keyframing or texturesynthesis techniques.