Results 1  10
of
65
Algorithmic information theory
 IBM JOURNAL OF RESEARCH AND DEVELOPMENT
, 1977
"... This paper reviews algorithmic information theory, which is an attempt to apply informationtheoretic and probabilistic ideas to recursive function theory. Typical concerns in this approach are, for example, the number of bits of information required to specify an algorithm, or the probability that ..."
Abstract

Cited by 319 (19 self)
 Add to MetaCart
This paper reviews algorithmic information theory, which is an attempt to apply informationtheoretic and probabilistic ideas to recursive function theory. Typical concerns in this approach are, for example, the number of bits of information required to specify an algorithm, or the probability that a program whose bits are chosen by coin flipping produces a given output. During the past few years the definitions of algorithmic information theory have been reformulated. The basic features of the new formalism are presented here and certain results of R. M. Solovay are reported.
Model Selection and the Principle of Minimum Description Length
 Journal of the American Statistical Association
, 1998
"... This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This ..."
Abstract

Cited by 145 (5 self)
 Add to MetaCart
This paper reviews the principle of Minimum Description Length (MDL) for problems of model selection. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework discriminates between competing models based on the complexity of each description. This approach began with Kolmogorov's theory of algorithmic complexity, matured in the literature on information theory, and has recently received renewed interest within the statistics community. In the pages that follow, we review both the practical as well as the theoretical aspects of MDL as a tool for model selection, emphasizing the rich connections between information theory and statistics. At the boundary between these two disciplines, we find many interesting interpretations of popular frequentist and Bayesian procedures. As we will see, MDL provides an objective umbrella under which rather disparate approaches to statistical modeling can coexist and be compared. We illustrate th...
Informationtheoretic Limitations of Formal Systems
 JOURNAL OF THE ACM
, 1974
"... An attempt is made to apply informationtheoretic computational complexity to metamathematics. The paper studies the number of bits of instructions that must be a given to a computer for it to perform finite and infinite tasks, and also the amount of time that it takes the computer to perform these ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
An attempt is made to apply informationtheoretic computational complexity to metamathematics. The paper studies the number of bits of instructions that must be a given to a computer for it to perform finite and infinite tasks, and also the amount of time that it takes the computer to perform these tasks. This is applied to measuring the difficulty of proving a given set of theorems, in terms of the number of bits of axioms that are assumed, and the size of the proofs needed to deduce the theorems from the axioms.
Informationtheoretic computational complexity
 IEEE Transactions on Information Theory
, 1974
"... This paper attempts to describe, in nontechnical language, some of the concepts and methods of one school of thought regarding computational complexity. It applies the viewpoint of information theory to computers. This will first lead us to a definition of the degree of randomness of individual bina ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
This paper attempts to describe, in nontechnical language, some of the concepts and methods of one school of thought regarding computational complexity. It applies the viewpoint of information theory to computers. This will first lead us to a definition of the degree of randomness of individual binary strings, and then to an informationtheoretic version of Gödel's theorem on the limitations of the axiomatic method. Finally, we will examine in the light of these ideas the scientific method and von Neumann's views on the basic conceptual problems of biology. This field's fundamental concept is the complexity of a binary string, that is, a string of bits, of zeros and ones. The complexity of a binary string is the minimum quantity of information needed to define the string. For example, the string of length n consisting entirely of ones is of complexity approximately log 2 n, because only log 2 n bits of information are required to specify n in binary notation. However, this is rather vague. Exactly what is meant by the definition of a string? To make this idea precise a computer is used. One says that a string defines another when the first string gives instructions for constructing the second string. In other words, one string defines another when it is a
The Application Of Algorithmic Probability to Problems in Artificial Intelligence
 in Uncertainty in Artificial Intelligence, Kanal, L.N. and Lemmer, J.F. (Eds), Elsevier Science Publishers B.V
, 1986
"... INTRODUCTION We will cover two topics First, Algorithmic Probability  the motivation for defining it, how it overcomes di#culties in other formulations of probability, some of its characteristic properties and successful applications. Second, we will apply it to problems in A.I.  where it p ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
INTRODUCTION We will cover two topics First, Algorithmic Probability  the motivation for defining it, how it overcomes di#culties in other formulations of probability, some of its characteristic properties and successful applications. Second, we will apply it to problems in A.I.  where it promises to give near optimum search procedures for two very broad classes of problems. A strong motivation for revising classical concepts of probability has come from the analysis of human problem solving. When working on a di#cult problem, a person is in a maze in which he must make choices of possible courses of action. If the problem is a familiar one, the choices will all be easy. If it is not familiar, there can be much uncertainty in each choice, but choices must somehow be made. One basis for choice might be the probability of each choice leading to a quick solution  this probability being based on experience in this problem and in problems like it. A good reason for using proba
Inequalities for Shannon entropies and Kolmogorov complexities
, 1997
"... The paper investigates connections between linear inequalities that are valid for Shannon entropies and for Kolmogorov complexities. ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
The paper investigates connections between linear inequalities that are valid for Shannon entropies and for Kolmogorov complexities.
Multifield Visualization Using Local Statistical Complexity
 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
, 2007
"... Modern unsteady (multi)field visualizations require an effective reduction of the data to be displayed. From a huge amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a new approach based on information theoretic conc ..."
Abstract

Cited by 26 (4 self)
 Add to MetaCart
Modern unsteady (multi)field visualizations require an effective reduction of the data to be displayed. From a huge amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a new approach based on information theoretic concepts is introduced in this paper to detect important regions. This is accomplished by extending the concept of local statistical complexity from finite state cellular automata to discretized (multi)fields. Thus, informative parts of the data can be highlighted in an applicationindependent, purely mathematical sense. The new measure can be applied to unsteady multifields on regular grids in any application domain. The ability to detect and visualize important parts is demonstrated using diffusion, flow, and weather simulations.
MachineLearning Applications of Algorithmic Randomness
 In Proceedings of the Sixteenth International Conference on Machine Learning
, 1999
"... Most machine learning algorithms share the following drawback: they only output bare predictions but not the confidence in those predictions. In the 1960s algorithmic information theory supplied universal measures of confidence but these are, unfortunately, noncomputable. In this paper we com ..."
Abstract

Cited by 23 (13 self)
 Add to MetaCart
Most machine learning algorithms share the following drawback: they only output bare predictions but not the confidence in those predictions. In the 1960s algorithmic information theory supplied universal measures of confidence but these are, unfortunately, noncomputable. In this paper we combine the ideas of algorithmic information theory with the theory of Support Vector machines to obtain practicable approximations to universal measures of confidence. We show that in some standard problems of pattern recognition our approximations work well. 1 INTRODUCTION Two important differences of most modern methods of machine learning (such as statistical learning theory, see Vapnik [21], 1998, or PAC theory) from classical statistical methods are that: ffl machine learning methods produce bare predictions, without estimating confidence in those predictions (unlike, eg, prediction of future observations in traditional statistics (Guttman [5], 1970)); ffl many machine learning ...