Results 1  10
of
39
Arithmetic coding
 IBM J. Res. Develop
, 1979
"... Arithmetic coding is a data compression technique that encodes data (the data string) by creating a code string which represents a fractional value on the number line between 0 and 1. The coding algorithm is symbolwise recursive; i.e., it operates upon and encodes (decodes) one data symbol per itera ..."
Abstract

Cited by 195 (0 self)
 Add to MetaCart
Arithmetic coding is a data compression technique that encodes data (the data string) by creating a code string which represents a fractional value on the number line between 0 and 1. The coding algorithm is symbolwise recursive; i.e., it operates upon and encodes (decodes) one data symbol per iteration or recursion. On each recursion, the algorithm successively partitions an interval
The ContextTree Weighting Method: Basic Properties
 IEEE Trans. Inform. Theory
, 1995
"... We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture." Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding ..."
Abstract

Cited by 159 (12 self)
 Add to MetaCart
We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture." Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding distribution for tree sources with an unknown model and unknown parameters. Computational and storage complexity of the proposed procedure are both linear in the source sequence length. We derive a natural upper bound on the cumulative redundancy of our method for individual sequences. The three terms in this bound can be identified as coding, parameter, and model redundancy. The bound holds for all source sequence lengths, not only for asymptotically large lengths. The analysis that leads to this bound is based on standard techniques and turns out to be extremely simple. Our upper bound on the redundancy shows that the proposed contexttree weighting procedure is optimal in the sense that it achieves the Rissanen (1984) lower bound.
Data Compression
 ACM Computing Surveys
, 1987
"... This paper surveys a variety of data compression methods spanning almost forty years of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique developed in 1986. The aim of data compression is to reduce redundancy in stored or communicated data, thus increasing effectiv ..."
Abstract

Cited by 87 (3 self)
 Add to MetaCart
This paper surveys a variety of data compression methods spanning almost forty years of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique developed in 1986. The aim of data compression is to reduce redundancy in stored or communicated data, thus increasing effective data density. Data compression has important application in the areas of file storage and distributed systems. Concepts from information theory, as they relate to the goals and evaluation of data compression methods, are discussed briefly. A framework for evaluation and comparison of methods is constructed and applied to the algorithms presented. Comparisons of both theoretical and empirical natures are reported and possibilities for future research are suggested. INTRODUCTION Data compression is often referred to as coding, where coding is a very general term encompassing any special representation of data which satisfies a given need. Information theory is defined to be the study of eff...
The Context Tree Weighting Method: Basic Properties
 IEEE Transactions on Information Theory
, 1995
"... We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture". Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding ..."
Abstract

Cited by 79 (1 self)
 Add to MetaCart
We describe a sequential universal data compression procedure for binary tree sources that performs the "double mixture". Using a context tree, this method weights in an efficient recursive way the coding distributions corresponding to all bounded memory tree sources, and achieves a desirable coding distribution for tree sources with an unknown model and unknown parameters. Computational and storage complexity of the proposed procedure are both linear in the source sequence length. We derive a natural upper bound on the cumulative redundancy of our method for individual sequences. The three terms in this bound can be identified as coding, parameter and model redundancy. The bound holds for all source sequence lengths, not only for asymptotically large lengths. The analysis that leads to this bound is based on standard techniques and turns out to be extremely simple. Our upper bound on the redundancy shows that the proposed context tree weighting procedure is optimal in the sense that i...
Lossy Source Coding
 IEEE Trans. Inform. Theory
, 1998
"... Lossy coding of speech, highquality audio, still images, and video is commonplace today. However, in 1948, few lossy compression systems were in service. Shannon introduced and developed the theory of source coding with a fidelity criterion, also called ratedistortion theory. For the first 25 year ..."
Abstract

Cited by 71 (1 self)
 Add to MetaCart
Lossy coding of speech, highquality audio, still images, and video is commonplace today. However, in 1948, few lossy compression systems were in service. Shannon introduced and developed the theory of source coding with a fidelity criterion, also called ratedistortion theory. For the first 25 years of its existence, ratedistortion theory had relatively little impact on the methods and systems actually used to compress real sources. Today, however, ratedistortion theoretic concepts are an important component of many lossy compression techniques and standards. We chronicle the development of ratedistortion theory and provide an overview of its influence on the practice of lossy source coding. Index TermsData compression, image coding, speech coding, rate distortion theory, signal coding, source coding with a fidelity criterion, video coding. I.
The Design and Analysis of Efficient Lossless Data Compression Systems
, 1993
"... Our thesis is that high compression efficiency for text and images can be obtained by using sophisticated statistical compression techniques, and that greatly increased speed can be achieved at only a small cost in compression efficiency. Our emphasis is on elegant design and mathematical as well as ..."
Abstract

Cited by 49 (0 self)
 Add to MetaCart
Our thesis is that high compression efficiency for text and images can be obtained by using sophisticated statistical compression techniques, and that greatly increased speed can be achieved at only a small cost in compression efficiency. Our emphasis is on elegant design and mathematical as well as empirical analysis. We analyze arithmetic coding as it is commonly implemented and show rigorously that almost no compression is lost in the implementation. We show that highefficiency lossless compression of both text and grayscale images can be obtained by using appropriate models in conjunction with arithmetic coding. We introduce a fourcomponent paradigm for lossless image compression and present two methods that give state of the art compression efficiency. In the text compression area, we give a small improvement on the preferred method in the literature. We show that we can often obtain significantly improved throughput at the cost of slightly reduced compression. The extra speed c...
Analysis of Arithmetic Coding for Data Compression
 INFORMATION PROCESSING AND MANAGEMENT
, 1992
"... Arithmetic coding, in conjunction with a suitable probabilistic model, can provide nearly optimal data compression. In this article we analyze the effect that the model and the particular implementation of arithmetic coding have on the code length obtained. Periodic scaling is often used in arithmet ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
Arithmetic coding, in conjunction with a suitable probabilistic model, can provide nearly optimal data compression. In this article we analyze the effect that the model and the particular implementation of arithmetic coding have on the code length obtained. Periodic scaling is often used in arithmetic coding implementations to reduce time and storage requirements; it also introduces a recency effect which can further affect compression. Our main contribution is introducing the concept of weighted entropy and using it to characterize in an elegant way the effect that periodic scaling has on the code length. We explain why and by how much scaling increases the code length for files with a homogeneous distribution of symbols, and we characterize the reduction in code length due to scaling for files exhibiting locality of reference. We also give a rigorous proof that the coding effects of rounding scaled weights, using integer arithmetic, and encoding endoffile are negligible.
Practical Implementations of Arithmetic Coding
 IN IMAGE AND TEXT
, 1992
"... We provide a tutorial on arithmetic coding, showing how it provides nearly optimal data compression and how it can be matched with almost any probabilistic model. We indicate the main disadvantage of arithmetic coding, its slowness, and give the basis of a fast, spaceefficient, approximate arithmet ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
We provide a tutorial on arithmetic coding, showing how it provides nearly optimal data compression and how it can be matched with almost any probabilistic model. We indicate the main disadvantage of arithmetic coding, its slowness, and give the basis of a fast, spaceefficient, approximate arithmetic coder with only minimal loss of compression efficiency. Our coder is based on the replacement of arithmetic by table lookups coupled with a new deterministic probability estimation scheme.