Results 1  10
of
82
The price of stability for network design with fair cost allocation
 In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract

Cited by 202 (27 self)
 Add to MetaCart
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widelystudied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fairdivision scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via bestresponse dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form nearoptimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of bestresponse dynamics, and discuss extensions to a weighted game.
Truthful Mechanisms for OneParameter Agents
"... In this paper, we show how to design truthful (dominant strategy) mechanisms for several combinatorial problems where each agent’s secret data is naturally expressed by a single positive real number. The goal of the mechanisms we consider is to allocate loads placed on the agents, and an agent’s sec ..."
Abstract

Cited by 185 (4 self)
 Add to MetaCart
In this paper, we show how to design truthful (dominant strategy) mechanisms for several combinatorial problems where each agent’s secret data is naturally expressed by a single positive real number. The goal of the mechanisms we consider is to allocate loads placed on the agents, and an agent’s secret data is the cost she incurs per unit load. We give an exact characterization for the algorithms that can be used to design truthful mechanisms for such load balancing problems using appropriate side payments. We use our characterization to design polynomial time truthful mechanisms for several problems in combinatorial optimization to which the celebrated VCG mechanism does not apply. For scheduling related parallel machines (QjjCmax), we give a 3approximation mechanism based on randomized rounding of the optimal fractional solution. This problem is NPcomplete, and the standard approximation algorithms (greedy loadbalancing or the PTAS) cannot be used in truthful mechanisms. We show our mechanism to be frugal, in that the total payment needed is only a logarithmic factor more than the actual costs incurred by the machines, unless one machine dominates the total processing power. We also give truthful mechanisms for maximum flow, Qjj P Cj (scheduling related machines to minimize the sum of completion times), optimizing an affine function over a fixed set, and special cases of uncapacitated facility location. In addition, for Qjj P wjCj (minimizing the weighted sum of completion times), we prove a lower bound of 2 p 3 for the best approximation ratio achievable by a truthful mechanism.
Truth revelation in approximately efficient combinatorial auctions
 Journal of the ACM
, 2002
"... Abstract. Some important classical mechanisms considered in Microeconomics and Game Theory require the solution of a difficult optimization problem. This is true of mechanisms for combinatorial auctions, which have in recent years assumed practical importance, and in particular of the gold standard ..."
Abstract

Cited by 182 (1 self)
 Add to MetaCart
Abstract. Some important classical mechanisms considered in Microeconomics and Game Theory require the solution of a difficult optimization problem. This is true of mechanisms for combinatorial auctions, which have in recent years assumed practical importance, and in particular of the gold standard for combinatorial auctions, the Generalized Vickrey Auction (GVA). Traditional analysis of these mechanisms—in particular, their truth revelation properties—assumes that the optimization problems are solved precisely. In reality, these optimization problems can usually be solved only in an approximate fashion. We investigate the impact on such mechanisms of replacing exact solutions by approximate ones. Specifically, we look at a particular greedy optimization method. We show that the GVA payment scheme does not provide for a truth revealing mechanism. We introduce another scheme that does guarantee truthfulness for a restricted class of players. We demonstrate the latter property by identifying natural properties for combinatorial auctions and showing that, for our restricted class of players, they imply that truthful strategies are dominant. Those properties have applicability beyond the specific auction studied.
Nearoptimal network design with selfish agents
 IN PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING (STOC
, 2003
"... We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possi ..."
Abstract

Cited by 120 (21 self)
 Add to MetaCart
We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent’s goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NPcomplete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial time algorithm to find a (1 + ε)approximate Nash equilibrium that does not cost much more. For the general connection game we prove that there is a 3approximate Nash equilibrium that is as cheap as the optimal network, and give an algorithm to find a (4.65 + ε)approximate Nash equilibrium that does not cost much more.
Greedy Facility Location Algorithms analyzed using Dual Fitting with FactorRevealing LP
 Journal of the ACM
, 2001
"... We present a natural greedy algorithm for the metric uncapacitated facility location problem and use the method of dual fitting to analyze its approximation ratio, which turns out to be 1.861. The running time of our algorithm is O(m log m), where m is the total number of edges in the underlying c ..."
Abstract

Cited by 100 (13 self)
 Add to MetaCart
We present a natural greedy algorithm for the metric uncapacitated facility location problem and use the method of dual fitting to analyze its approximation ratio, which turns out to be 1.861. The running time of our algorithm is O(m log m), where m is the total number of edges in the underlying complete bipartite graph between cities and facilities. We use our algorithm to improve recent results for some variants of the problem, such as the fault tolerant and outlier versions. In addition, we introduce a new variant which can be seen as a special case of the concave cost version of this problem.
Boosted sampling: Approximation algorithms for stochastic optimization problems
 IN: 36TH STOC
, 2004
"... Several combinatorial optimization problems choose elements to minimize the total cost of constructing a feasible solution that satisfies requirements of clients. In the STEINER TREE problem, for example, edges must be chosen to connect terminals (clients); in VERTEX COVER, vertices must be chosen t ..."
Abstract

Cited by 86 (20 self)
 Add to MetaCart
Several combinatorial optimization problems choose elements to minimize the total cost of constructing a feasible solution that satisfies requirements of clients. In the STEINER TREE problem, for example, edges must be chosen to connect terminals (clients); in VERTEX COVER, vertices must be chosen to cover edges (clients); in FACILITY LOCATION, facilities must be chosen and demand vertices (clients) connected to these chosen facilities. We consider a stochastic version of such a problem where the solution is constructed in two stages: Before the actual requirements materialize, we can choose elements in a first stage. The actual requirements are then revealed, drawn from a prespecified probability distribution π; thereupon, some more elements may be chosen to obtain a feasible solution for the actual requirements. However, in this second (recourse) stage, choosing an element is costlier by a factor of σ> 1. The goal is to minimize the first stage cost plus the expected second stage cost. We give a general yet simple technique to adapt approximation algorithms for several deterministic problems to their stochastic versions via the following method. • First stage: Draw σ independent sets of clients from the distribution π and apply the approximation algorithm to construct a feasible solution for the union of these sets. • Second stage: Since the actual requirements have now been revealed, augment the firststage solution to be feasible for these requirements.
On Nash equilibria for a network creation game
 In Proc. of SODA
, 2006
"... We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost of α per edge. The goal of every player is to minimize the sum consisting of (a) the cost of the links he ..."
Abstract

Cited by 65 (7 self)
 Add to MetaCart
We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost of α per edge. The goal of every player is to minimize the sum consisting of (a) the cost of the links he has created and (b) the sum of the distances to all other players. Fabrikant et al. conjectured that there exists a constant A such that, for any α> A, all nontransient Nash equilibria graphs are trees. They showed that if a Nash equilibrium is a tree, the price of anarchy is constant. In this paper we disprove the tree conjecture. More precisely, we show that for any positive integer n0, there exists a graph built by n ≥ n0 players which contains cycles and forms a nontransient
Approximation techniques for utilitarian mechanism design
 IN PROC. 36TH ACM SYMP. ON THEORY OF COMPUTING
, 2005
"... This paper deals with the design of efficiently computable incentive compatible, or truthful, mechanisms for combinatorial optimization problems with multiparameter agents. We focus on approximation algorithms for NPhard mechanism design problems. These algorithms need to satisfy certain monotonic ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
This paper deals with the design of efficiently computable incentive compatible, or truthful, mechanisms for combinatorial optimization problems with multiparameter agents. We focus on approximation algorithms for NPhard mechanism design problems. These algorithms need to satisfy certain monotonicity properties to ensure truthfulness. Since most of the known approximation techniques do not fulfill these properties, we study alternative techniques. Our first contribution is a quite general method to transform a pseudopolynomial algorithm into a monotone FPTAS. This can be applied to various problems like, e.g., knapsack, constrained shortest path, or job scheduling with deadlines. For example, the monotone FPTAS for the knapsack problem gives a very efficient, truthful mechanism for singleminded multiunit auctions. The best previous result for such auctions was a 2approximation. In addition,
Pricing WiFi at Starbucks  Issues in Online Mechanism Design
 In Fourth ACM Conf. on Electronic Commerce (EC’03
, 2003
"... We consider the problem of designing mechanisms for online problems in which agents arrive over time and the mechanism is unaware of the agent until the agent announces her arrival. Problems of this sort are becoming extremely common particularly in a wide variety of problems involving wireless n ..."
Abstract

Cited by 45 (11 self)
 Add to MetaCart
We consider the problem of designing mechanisms for online problems in which agents arrive over time and the mechanism is unaware of the agent until the agent announces her arrival. Problems of this sort are becoming extremely common particularly in a wide variety of problems involving wireless networking.
Strategyproof Costsharing Mechanisms for Set Cover and Facility Location Games
, 2003
"... this paper, we obtain strategyproof cost allocations for two fundamental games whose underlying optimization problems are NPhard, the set cover game and the facility location game. For the latter game, this is made possible by new approximation algorithms for the underlying optimization problem usi ..."
Abstract

Cited by 44 (0 self)
 Add to MetaCart
this paper, we obtain strategyproof cost allocations for two fundamental games whose underlying optimization problems are NPhard, the set cover game and the facility location game. For the latter game, this is made possible by new approximation algorithms for the underlying optimization problem using the technique of dual fitting [7]. In retrospect, the natural greedy algorithm for the set cover problem (see [17]) can also analyzed using this technique  we utilize this viewpoint for handling the set cover game. The facility location game was studied in [9, 4], who left the open problem of obtaining a group strategyproof mechanism based on a constant factor approximation algorithm. Our paper partially answers this question. We give a strategyproof mechanism, but cannot achieve group strategyproofness. More recently, Pal and Tardos [15] have announced a 3approximately budget balanced crossmonotonic costsharing method for the facility location problem. This gives a group strategyproof mechanism for the facility location game that recovers 3 rd of the cost