Results 1  10
of
51
Multiinterval subfactors and modularity of representations in conformal field theory
 Commun. Math. Phys
"... Dedicated to John E. Roberts on the occasion of his sixtieth birthday We describe the structure of the inclusions of factors A(E) ⊂A(E ′ ) ′ associated with multiintervals E ⊂ R for a local irreducible net A of von Neumann algebras on the real line satisfying the split property and Haag duality. I ..."
Abstract

Cited by 63 (26 self)
 Add to MetaCart
Dedicated to John E. Roberts on the occasion of his sixtieth birthday We describe the structure of the inclusions of factors A(E) ⊂A(E ′ ) ′ associated with multiintervals E ⊂ R for a local irreducible net A of von Neumann algebras on the real line satisfying the split property and Haag duality. In particular, if the net is conformal and the subfactor has finite index, the inclusion associated with two separated intervals is isomorphic to the LongoRehren inclusion, which provides a quantum double construction of the tensor category of superselection sectors of A. As a consequence, the index of A(E) ⊂A(E ′ ) ′ coincides with the global index associated with all irreducible sectors, the braiding symmetry associated with all sectors is nondegenerate, namely the representations of A form a modular tensor category, and every sector is a direct sum of sectors with finite dimension. The superselection structure is generated by local data. The same results hold true if conformal invariance is replaced by strong additivity and there exists a modular PCT symmetry.
Operator Algebras and Conformal Field Theory
 COMMUNICATIONS MATHEMATICAL PHYSICS
, 1993
"... We define and study twodimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite typ ..."
Abstract

Cited by 55 (2 self)
 Add to MetaCart
We define and study twodimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the TomitaTakesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Moebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a "backgroundindependent" formulation of conformal field theories.
Chiral Structure of Modular Invariants for Subfactors
, 1999
"... In this paper we further analyze modular invariants for subfactors, in particular the structure of the chiral induced systems of MM morphisms. The relative braiding between the chiral systems restricts to a proper braiding on their “ambichiral ” intersection, and we show that the ambichiral braidin ..."
Abstract

Cited by 48 (21 self)
 Add to MetaCart
In this paper we further analyze modular invariants for subfactors, in particular the structure of the chiral induced systems of MM morphisms. The relative braiding between the chiral systems restricts to a proper braiding on their “ambichiral ” intersection, and we show that the ambichiral braiding is nondegenerate if the original braiding of the NN morphisms is. Moreover, in this case the dimensions of the irreducible representations of the chiral fusion rule algebras are given by the chiral branching coefficients which describe the ambichiral contribution in the irreducible decomposition of αinduced sectors. We show that modular invariants come along naturally with several nonnegative integer valued matrix representations of the original NN Verlinde fusion rule algebra, and we completely determine their decomposition into its characters. Finally the theory is illustrated by various examples, including the treatment of all SU (2)k modular invariants.
On αinduction, chiral generators and modular invariants for subfactors
 Commun. Math. Phys
, 1999
"... We consider a type III subfactor N ⊂ M of finite index with a finite system of braided NN morphisms which includes the irreducible constituents of the dual canonical endomorphism. We apply αinduction and, developing further some ideas of Ocneanu, we define chiral generators for the double triangle ..."
Abstract

Cited by 38 (10 self)
 Add to MetaCart
We consider a type III subfactor N ⊂ M of finite index with a finite system of braided NN morphisms which includes the irreducible constituents of the dual canonical endomorphism. We apply αinduction and, developing further some ideas of Ocneanu, we define chiral generators for the double triangle algebra. Using a new concept of intertwining braiding fusion relations, we show that the chiral generators can be naturally identified with the αinduced sectors. A matrix Z is defined and shown to commute with the S and Tmatrices arising from the braiding. If the braiding is nondegenerate, then Z is a “modular invariant mass matrix ” in the usual sense of conformal field theory. We show that in that case the fusion rule algebra of the dual system of MM morphisms is generated by the images of both kinds of αinduction, and that the structural information about its irreducible representations is encoded in the mass matrix Z. Our analysis sheds further light on the connection between (the classifications of) modular invariants and subfactors, and we will
The Structure of Sectors Associated with the LongoRehren Inclusions I. General Theory
 Commun. Math. Phys
, 1999
"... We investigate the structure of the LongoRehren inclusion for a finite closed system of endomorphisms of factors, whose categorical structure is known to be the same as the asymptotic inclusion of A. Ocneanu. In particular, we obtain a precise description of the sectors associated with the LongoRe ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
We investigate the structure of the LongoRehren inclusion for a finite closed system of endomorphisms of factors, whose categorical structure is known to be the same as the asymptotic inclusion of A. Ocneanu. In particular, we obtain a precise description of the sectors associated with the LongoRehren inclusions in terms of half braidings, which do not necessarily satisfy the usual condition of braidings. In doing so, we give new proofs to most of the known statements concerning asymptotic inclusions. We construct a complete system of matrix units of the tube algebra using the half braidings, which will be used in the second part to describe concrete examples of the LongoRehren inclusions arising from the Cuntz algebra endomorphisms. We also discuss the case where the original system has a braiding, and generalize Ocneanu and EvansKawahigashi's method for the analysis of the asymptotic inclusions of the Hecke algebra subfactors. 1 Introduction The notion of the asymptotic inclusio...
Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors
 Commun. Math. Phys
, 2000
"... A braided subfactor determines a coupling matrix Z which commutes with the S and Tmatrices arising from the braiding. Such a coupling matrix is not necessarily of “type I”, i.e. in general it does not have a blockdiagonal structure which can be reinterpreted as the diagonal coupling matrix with r ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
A braided subfactor determines a coupling matrix Z which commutes with the S and Tmatrices arising from the braiding. Such a coupling matrix is not necessarily of “type I”, i.e. in general it does not have a blockdiagonal structure which can be reinterpreted as the diagonal coupling matrix with respect to a suitable extension. We show that there are always two intermediate subfactors which correspond to left and right maximal extensions and which determine “parent ” coupling matrices Z ± of type I. Moreover it is shown that if the intermediate subfactors coincide, so that Z + = Z − , then Z is related to Z + by an automorphism of the extended fusion rules. The intertwining relations of chiral branching coefficients between original and extended S and Tmatrices are also clarified. None of our results depends on nondegeneracy of the braiding, i.e. the S and Tmatrices need not be modular. Examples from SO(n) current algebra models illustrate that the parents can be different, Z + ̸ = Z − , and that Z need not be related to a type I invariant by such an automorphism. 1
Modular data: the algebraic combinatorics of conformal field theory, preprint math.QA/0103044
"... This paper is primarily intended as an introduction for mathematicians to some of the rich algebraic combinatorics arising in for instance conformal field theory (CFT). It is essentially selfcontained, apart from some of the background motivation (Section I) and examples (Section III) which are inc ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
This paper is primarily intended as an introduction for mathematicians to some of the rich algebraic combinatorics arising in for instance conformal field theory (CFT). It is essentially selfcontained, apart from some of the background motivation (Section I) and examples (Section III) which are included to give the reader a sense of the context.
Galois theory for braided tensor categories and the modular closure
 Adv. Math
, 2000
"... Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC with positive ∗operation.) A Galois correspondence is established between intermediate categories sitting between C and C ⋊S and closed subgroups of the Galois group Gal(C⋊S/C) = AutC(C⋊S) of C, the latter being isomorphic to the compact group associated to S by the duality theorem of Doplicher and Roberts. Denoting by D ⊂ C the full subcategory of degenerate objects, i.e. objects which have trivial monodromy with all objects of C, the braiding of C extends to a braiding of C⋊S iff S ⊂ D. Under this condition C⋊S has no nontrivial degenerate objects iff S = D. If the original category C is rational (i.e. has only finitely many isomorphism classes of irreducible objects) then the same holds for the new one. The category C ≡ C ⋊ D is called the modular closure of C since in the rational case it is modular, i.e. gives rise to a unitary representation of the modular group SL(2, Z). (In passing we prove that every braided tensor ∗category with conjugates automatically is a ribbon category, i.e. has a twist.) If all simple objects of S have dimension one the structure of the category C ⋊ S can be clarified quite explicitly in terms of group cohomology. 1
From subfactors to categories and topology III. Triangulation invariants of 3manifolds and Morita equivalence of tensor categories
 In preparation
"... ..."
Anyons in an exactly solved model and beyond
, 2005
"... A spin 1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge f ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
A spin 1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static Z2 gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are nonAbelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number ν. The Abelian and nonAbelian phases of the original model correspond to ν = 0 and ν = ±1, respectively. The anyonic properties of excitation depend on ν mod 16, whereas ν itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.