Results 1  10
of
113
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 Journal of the ACM
, 2004
"... Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily ..."
Abstract

Cited by 324 (25 self)
 Add to MetaCart
Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent. Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 234 (13 self)
 Add to MetaCart
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
Local Statistics For Random Domino Tilings Of The Aztec Diamond
 Duke Math. J
, 1996
"... . We prove an asymptotic formula for the probability that, if one chooses a domino tiling of a large Aztec diamond according to the uniform distribution on such tilings, the tiling will contain a domino covering a given pair of adjacent lattice squares. This formula quantifies the effect of the diam ..."
Abstract

Cited by 82 (11 self)
 Add to MetaCart
. We prove an asymptotic formula for the probability that, if one chooses a domino tiling of a large Aztec diamond according to the uniform distribution on such tilings, the tiling will contain a domino covering a given pair of adjacent lattice squares. This formula quantifies the effect of the diamond 's boundary conditions on the behavior of typical tilings; in addition, it yields a new proof of the arctic circle theorem of Jockusch, Propp, and Shor. Our approach is to use the saddle point method to estimate certain weighted sums of squares of Krawtchouk polynomials (whose relevance to domino tilings is demonstrated elsewhere), and to combine these estimates with some exponential sum bounds to deduce our final result. This approach generalizes straightforwardly to the case in which the probability distribution on the set of tilings incorporates bias favoring horizontal over vertical tiles or vice versa. We also prove a fairly general large deviation estimate for domino tilings of sim...
A variational principle for domino tilings
"... Abstract. We formulate and prove a variational principle (in the sense of thermodynamics) for random domino tilings, or equivalently for the dimer model on a square grid. This principle states that a typical tiling of an arbitrary finite region can be described by a function that maximizes an entrop ..."
Abstract

Cited by 62 (11 self)
 Add to MetaCart
Abstract. We formulate and prove a variational principle (in the sense of thermodynamics) for random domino tilings, or equivalently for the dimer model on a square grid. This principle states that a typical tiling of an arbitrary finite region can be described by a function that maximizes an entropy integral. We associate an entropy to every sort of local behavior domino tilings can exhibit, and prove that almost all tilings lie within ε (for an appropriate metric) of the unique entropymaximizing solution. This gives a solution to the dimer problem with fully general boundary conditions, thereby resolving an issue first raised by Kasteleyn. Our methods also apply to dimer models on other grids and their associated tiling models, such as tilings of the plane by three orientations of unit lozenges. The effect of boundary conditions is, however, not entirely trivial and will be discussed in more detail in a subsequent paper. P. W. Kasteleyn, 1961 1.
Alternating Sign Matrices and Domino Tilings
 Journal of Algebraic Combinatorics
, 1992
"... We introduce a family of planar regions, called Aztec diamonds, and study the ways in which these regions can be tiled by dominoes. Our main result is a generating function that not only gives the number of domino tilings of the Aztec diamond of order n but also provides information about the orient ..."
Abstract

Cited by 47 (12 self)
 Add to MetaCart
We introduce a family of planar regions, called Aztec diamonds, and study the ways in which these regions can be tiled by dominoes. Our main result is a generating function that not only gives the number of domino tilings of the Aztec diamond of order n but also provides information about the orientation of the dominoes (vertical versus horizontal) and the accessibility of one tiling from another by means of local modifications. Several proofs of the formula are given. The problem turns out to have connections with the alternating sign matrices of Mills, Robbins, and Rumsey, as well as the square ice model studied by Lieb. 1
Conformal Invariance of Domino Tiling
 Ann. Probab
, 1999
"... this paper we deal with the twodimensional lattice dimer model, or domino tiling model (a domino tiling is a tiling with 2 \Theta 1 and 1 \Theta 2 rectangles). We prove that in the limit as the lattice spacing ffl tends to zero, certain macroscopic properties of the tiling are conformally invariant ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
this paper we deal with the twodimensional lattice dimer model, or domino tiling model (a domino tiling is a tiling with 2 \Theta 1 and 1 \Theta 2 rectangles). We prove that in the limit as the lattice spacing ffl tends to zero, certain macroscopic properties of the tiling are conformally invariant. The height function h on a domino tiling is an integervalued function on the vertices in a tiling. It is defined below in section 2.2; see also [4, 19]. One can think of a domino tiling of U as a map h from U
Statistical Mechanics, ThreeDimensionality and NPcompleteness I. Universality of Intractability for the Partition Function of the Ising Model Across NonPlanar Lattices (Extended Abstract)
"... This work provides an exact characterization, across crystal lattices, of the computational tractability frontier for the partition functions of several Ising models. Our results show that beyond planarity computing partition functions is NPcomplete. We provide rigorous solutions to several working ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
This work provides an exact characterization, across crystal lattices, of the computational tractability frontier for the partition functions of several Ising models. Our results show that beyond planarity computing partition functions is NPcomplete. We provide rigorous solutions to several working conjectures in the statistical mechanics literature, such as the CrossedBonds conjecture, and the impossibility to compute effectively the partition functions for any threedimensional lattice Ising model � these conjectures apply to the Onsager algebraic method, the Fermion operators method, and the combinatorial method based on Pfaffians. The fundamental results of the area, including those of Onsager, Kac, Feynman, Fisher, Kasteleyn, Temperley, Green, Hurst and more recently Barahona: for every Planar crystal lattice the partition functions for the nite sublattices can be computed in polynomialtime, paired with the results of this paper: for every NonPlanar crystal lattice computing the parition functions for the finite sublattices is NPcomplete, provide an exact characterization for several of the most studied Ising models. Our results settle at once, for several models, (1) the 2D nonplanar vs. 2D planar, (2) the nextnearest neighbour
Stationary determinantal processes: phase multiplicity
 Bernoullicity, entropy, and domination, Duke Math. Journal
, 2003
"... We study a class of stationary processes indexed by Z d that are defined via minors of ddimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Pha ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
We study a class of stationary processes indexed by Z d that are defined via minors of ddimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong Kproperty, a particular strengthening of the usual K (Kolmogorov) property. We show that all of these processes are Bernoulli shifts (isomorphic to independent identically distributed (i.i.d.) processes in the sense of ergodic theory). We obtain estimates of their entropies, and we relate these processes via stochastic domination
Approximating the Number of MonomerDimer Coverings of a Lattice
 Journal of Statistical Physics
, 1996
"... The paper studies the problem of counting the number of coverings of a ddimensional rectangular lattice by a specified number of monomers and dimers. This problem arises in several models in statistical physics, and has been widely studied. A classical technique due to Fisher, Kasteleyn and Temper ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
The paper studies the problem of counting the number of coverings of a ddimensional rectangular lattice by a specified number of monomers and dimers. This problem arises in several models in statistical physics, and has been widely studied. A classical technique due to Fisher, Kasteleyn and Temperley solves the problem exactly in two dimensions when the number of monomers is zero (the dimer covering problem), but is not applicable in higher dimensions or in the presence of monomers. This paper presents the first provably polynomial time approximation algorithms for computing the number of coverings with any specified number of monomers in ddimensional rectangular lattices with periodic boundaries, for any fixed dimension d , and in twodimensional lattices with fixed boundaries. The algorithms are based on Monte Carlo simulation of a suitable Markov chain, and, in contrast to most Monte Carlo algorithms in statistical physics, have rigorously derived performance guarantees that do n...