Results 1 
6 of
6
How Good is Recursive Bisection?
 SIAM J. Sci. Comput
, 1995
"... . The most commonly used pway partitioning method is recursive bisection (RB). It first divides a graph or a mesh into two equal sized pieces, by a "good" bisection algorithm, and then recursively divides the two pieces. Ideally, we would like to use an optimal bisection algorithm. Becaus ..."
Abstract

Cited by 86 (4 self)
 Add to MetaCart
. The most commonly used pway partitioning method is recursive bisection (RB). It first divides a graph or a mesh into two equal sized pieces, by a "good" bisection algorithm, and then recursively divides the two pieces. Ideally, we would like to use an optimal bisection algorithm. Because the optimal bisection problem, that partitions a graph into two equal sized subgraphs to minimize the number of edges cut, is NPcomplete, practical RB algorithms use more efficient heuristics in place of an optimal bisection algorithm. Most such heuristics are designed to find the best possible bisection within allowed time. We show that the recursive bisection method, even when an optimal bisection algorithm is assumed, may produce a pway partition that is very far way from the optimal one. Our negative result is complemented by two positive ones: First we show that for some important classes of graphs that occur in practical applications, such as wellshaped finite element and finite difference...
Separators for spherepackings and nearest neighbor graphs
 J. ACM
, 1997
"... Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the ..."
Abstract

Cited by 72 (7 self)
 Add to MetaCart
Abstract. A collection of n balls in d dimensions forms a kply system if no point in the space is covered by more than k balls. We show that for every kply system �, there is a sphere S that intersects at most O(k 1/d n 1�1/d) balls of � and divides the remainder of � into two parts: those in the interior and those in the exterior of the sphere S, respectively, so that the larger part contains at most (1 � 1/(d � 2))n balls. This bound of O(k 1/d n 1�1/d) is the best possible in both n and k. We also present a simple randomized algorithm to find such a sphere in O(n) time. Our result implies that every knearest neighbor graphs of n points in d dimensions has a separator of size O(k 1/d n 1�1/d). In conjunction with a result of Koebe that every triangulated planar graph is isomorphic to the intersection graph of a diskpacking, our result not only gives a new geometric proof of the planar separator theorem of Lipton and Tarjan, but also generalizes it to higher dimensions. The separator algorithm can be used for point location and geometric divide and conquer in a fixed dimensional space.
Linear Algorithms for Partitioning Embedded Graphs of Bounded Genus
 SIAM Journal of Discrete Mathematics
, 1996
"... This paper develops new techniques for constructing separators for graphs embedded on surfaces of bounded genus. For any arbitrarily small positive " we show that any nvertex graph G of genus g can be divided in O(n + g) time into components whose sizes do not exceed "n by removing a set ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
This paper develops new techniques for constructing separators for graphs embedded on surfaces of bounded genus. For any arbitrarily small positive " we show that any nvertex graph G of genus g can be divided in O(n + g) time into components whose sizes do not exceed "n by removing a set C of O( p (g + 1=")n) vertices. Our result improves the best previous ones with respect to the size of C and the time complexity of the algorithm. Moreover, we show that one can cut off from G a piece of no more than (1 \Gamma ")n vertices by removing a set of O( p n"(g" + 1) vertices. Both results are optimal up to a constant factor. Keywords: graph separator, graph genus, algorithm, divideandconquer, topological graph theory AMS(MOS) subject classifications: 05C10, 05C85, 68R10 1 Bulgarian Academy of Sci., CICT, G.Bonchev 25A, 1113 Sofia, Bulgaria 2 Department of Comp.Sci.,Rice University, P.O.Box 1892, Houston, Texas 77251, USA 1 Introduction Let S be a class of graphs closed under t...
unknown title
"... Geometric Separator for ddimensional ball graphs We study the graph partitioning problem on ddimensional ball graphs in a geometric way. Let B be a set of balls in ddimensional Euclidean space with radius ratio δ and λprecision. We prove that it can be partitioned into three sets BS, BI, BE such ..."
Abstract
 Add to MetaCart
Geometric Separator for ddimensional ball graphs We study the graph partitioning problem on ddimensional ball graphs in a geometric way. Let B be a set of balls in ddimensional Euclidean space with radius ratio δ and λprecision. We prove that it can be partitioned into three sets BS, BI, BE such that the intersection of BI and BE is empty, and for some constant α, the volume of BI and BE is less than α portion of volume of B, and the volume of BS is of size O(σ/λ, (µ(B)) 1 − 1 d), where µ(B) is the volume of B. We also provide a randomized algorithm to find such a partition in linear time. 1