Results 1 
2 of
2
Experiments with Proof Plans for Induction
 Journal of Automated Reasoning
, 1992
"... The technique of proof plans, is explained. This technique is used to guide automatic inference in order to avoid a combinatorial explosion. Empirical research is described to test this technique in the domain of theorem proving by mathematical induction. Heuristics, adapted from the work of Boye ..."
Abstract

Cited by 95 (33 self)
 Add to MetaCart
The technique of proof plans, is explained. This technique is used to guide automatic inference in order to avoid a combinatorial explosion. Empirical research is described to test this technique in the domain of theorem proving by mathematical induction. Heuristics, adapted from the work of Boyer and Moore, have been implemented as Prolog programs, called tactics, and used to guide an inductive proof checker, Oyster. These tactics have been partially specified in a metalogic, and the plan formation program, clam, has been used to reason with these specifications and form plans. These plans are then executed by running their associated tactics and, hence, performing an Oyster proof. Results are presented of the use of this technique on a number of standard theorems from the literature. Searching in the planning space is shown to be considerably cheaper than searching directly in Oyster's search space. The success rate on the standard theorems is high. Keywords Theorem prov...
A Science of Reasoning
, 1991
"... This paper addresses the question of how we can understand reasoning in general and mathematical proofs in particular. It argues the need for a highlevel understanding of proofs to complement the lowlevel understanding provided by Logic. It proposes a role for computation in providing this high ..."
Abstract

Cited by 74 (19 self)
 Add to MetaCart
This paper addresses the question of how we can understand reasoning in general and mathematical proofs in particular. It argues the need for a highlevel understanding of proofs to complement the lowlevel understanding provided by Logic. It proposes a role for computation in providing this highlevel understanding, namely by the association of proof plans with proofs. Proof plans are defined and examples are given for two families of proofs. Criteria are given for assessing the association of a proof plan with a proof. 1 Motivation: the understanding of mathematical proofs The understanding of reasoning has interested researchers since, at least, Aristotle. Logic has been proposed by Aristotle, Boole, Frege and others as a way of formalising arguments and understanding their structure. There have also been psychological studies of how people and animals actually do reason. The work on Logic has been especially influential in the automation of reasoning. For instance, resolution...