Results 1  10
of
40
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 346 (16 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine. 1.
An Application of Recurrent Nets to Phone Probability Estimation
 IEEE Transactions on Neural Networks
, 1994
"... This paper presents an application of recurrent networks for phone probability estimation in large vocabulary speech recognition. The need for efficient exploitation of context information is discussed ..."
Abstract

Cited by 193 (8 self)
 Add to MetaCart
This paper presents an application of recurrent networks for phone probability estimation in large vocabulary speech recognition. The need for efficient exploitation of context information is discussed
Adaptive Probabilistic Networks with Hidden Variables
 Machine Learning
, 1997
"... . Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem ..."
Abstract

Cited by 158 (10 self)
 Add to MetaCart
. Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This is an important problem, because structure is much easier to elicit from experts than numbers, and the world is rarely fully observable. We present a gradientbased algorithmand show that the gradient can be computed locally, using information that is available as a byproduct of standard probabilistic network inference algorithms. Our experimental results demonstrate that using prior knowledge about the structure, even with hidden variables, can significantly improve the learning rate of probabilistic networks. We extend the method to networks in which the conditional probability tables are described using a ...
Nonlinear BlackBox Modeling in System Identification: a Unified Overview
 Automatica
, 1995
"... A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, ..."
Abstract

Cited by 136 (15 self)
 Add to MetaCart
A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, as well as wavelet transform based methods and models based on fuzzy sets and fuzzy rules. This paper describes all these approaches in a common framework, from a user's perspective. It focuses on what are the common features in the different approaches, the choices that have to be made and what considerations are relevant for a successful system identification application of these techniques. It is pointed out that the nonlinear structures can be seen as a concatenation of a mapping from observed data to a regression vector and a nonlinear mapping from the regressor space to the output space. These mappings are discussed separately. The latter mapping is usually formed as a basis function e...
Natural language grammatical inference with recurrent neural networks
 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 1998
"... This paper examines the inductive inference of a complex grammar with neural networks  specifically, the task considered is that of training a network to classify natural language sentences as grammatical or ungrammatical, thereby exhibiting the same kind of discriminatory power provided by the P ..."
Abstract

Cited by 45 (1 self)
 Add to MetaCart
This paper examines the inductive inference of a complex grammar with neural networks  specifically, the task considered is that of training a network to classify natural language sentences as grammatical or ungrammatical, thereby exhibiting the same kind of discriminatory power provided by the Principles and Parameters linguistic framework, or GovernmentandBinding theory. Neural networks are trained, without the division into learned vs. innate components assumed by Chomsky, in an attempt to produce the same judgments as native speakers on sharply grammatical/ungrammatical data. How a recurrent neural network could possess linguistic capability and the properties of various common recurrent neural network architectures are discussed. The problem exhibits training behavior which is often not present with smaller grammars and training was initially difficult. However, after implementing several techniques aimed at improving the convergence of the gradient descent backpropagationthroughtime training algorithm, significant learning was possible. It was found that certain architectures are better able to learn an appropriate grammar. The operation of the networks and their training is analyzed. Finally, the extraction of rules in the form of deterministic finite state automata is investigated.
From RankNet to LambdaRank to LambdaMART: An Overview
"... LambdaMART is the boosted tree version of LambdaRank, which is based on RankNet. RankNet, LambdaRank, and LambdaMART have proven to be very successful algorithms for solving real world ranking problems: for example an ensemble of LambdaMART rankers won Track 1 of the 2010 Yahoo! Learning To Rank Cha ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
LambdaMART is the boosted tree version of LambdaRank, which is based on RankNet. RankNet, LambdaRank, and LambdaMART have proven to be very successful algorithms for solving real world ranking problems: for example an ensemble of LambdaMART rankers won Track 1 of the 2010 Yahoo! Learning To Rank Challenge. The details of these algorithms are spread across several papers and reports, and so here we give a selfcontained, detailed and complete description of them. 1
High accuracy retrieval with multiple nested ranker
 SIGIR Conference (pp. 437– 444
, 2006
"... High precision at the top ranks has become a new focus of research in information retrieval. This paper presents the multiple nested ranker approach that improves the accuracy at the top ranks by iteratively reranking the top scoring documents. At each iteration, this approach uses the RankNet lear ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
High precision at the top ranks has become a new focus of research in information retrieval. This paper presents the multiple nested ranker approach that improves the accuracy at the top ranks by iteratively reranking the top scoring documents. At each iteration, this approach uses the RankNet learning algorithm to rerank a subset of the results. This splits the problem into smaller and easier tasks and generates a new distribution of the results to be learned by the algorithm. We evaluate this approach using different settings on a data set labeled with several degrees of relevance. We use the normalized discounted cumulative gain (NDCG) to measure the performance because it depends not only on the position but also on the relevance score of the document in the ranked list. Our experiments show that making the learning algorithm concentrate on the top scoring results improves precision at the top ten documents in terms of the NDCG score.
FRank: A Ranking Method with Fidelity Loss
, 2007
"... Ranking problem is becoming important in many fields, especially in information retrieval (IR). Many machine learning techniques have been proposed for ranking problem, such as RankSVM, RankBoost, and RankNet. Among them, RankNet, which is based on a probabilistic ranking framework, is leading to pr ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
Ranking problem is becoming important in many fields, especially in information retrieval (IR). Many machine learning techniques have been proposed for ranking problem, such as RankSVM, RankBoost, and RankNet. Among them, RankNet, which is based on a probabilistic ranking framework, is leading to promising results and has been applied to a commercial Web search engine. In this paper we conduct further study on the probabilistic ranking framework and provide a novel loss function named fidelity loss for measuring loss of ranking. The fidelity loss not only inherits effective properties of the probabilistic ranking framework in RankNet, but possesses new properties that are helpful for ranking. This includes the fidelity loss obtaining zero for each document pair, and having a finite upper bound that is necessary for conducting querylevel normalization. We also propose an algorithm named FRank based on a generalized additive model for the sake of minimizing the fidelity loss and learning an effective ranking function. We evaluated the proposed algorithm for two datasets: TREC dataset and real Web search dataset. The experimental results show that the proposed FRank algorithm outperforms other learningbased ranking methods on both conventional IR problem and Web searching.
Computing Second Derivatives in FeedForward Networks: a Review
 IEEE Transactions on Neural Networks
, 1994
"... . The calculation of second derivatives is required by recent training and analyses techniques of connectionist networks, such as the elimination of superfluous weights, and the estimation of confidence intervals both for weights and network outputs. We here review and develop exact and approximate ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
. The calculation of second derivatives is required by recent training and analyses techniques of connectionist networks, such as the elimination of superfluous weights, and the estimation of confidence intervals both for weights and network outputs. We here review and develop exact and approximate algorithms for calculating second derivatives. For networks with jwj weights, simply writing the full matrix of second derivatives requires O(jwj 2 ) operations. For networks of radial basis units or sigmoid units, exact calculation of the necessary intermediate terms requires of the order of 2h + 2 backward/forwardpropagation passes where h is the number of hidden units in the network. We also review and compare three approximations (ignoring some components of the second derivative, numerical differentiation, and scoring). Our algorithms apply to arbitrary activation functions, networks, and error functions (for instance, with connections that skip layers, or radial basis functions, or ...
Exponentially Many Local Minima for Single Neurons
, 1995
"... We show that for a single neuron with the logistic function as the transfer function the number of local minima of the error function based on the square loss can grow exponentially in the dimension. 1 INTRODUCTION Consider a single artificial neuron with d inputs. The neuron has d weights w 2 R d ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
We show that for a single neuron with the logistic function as the transfer function the number of local minima of the error function based on the square loss can grow exponentially in the dimension. 1 INTRODUCTION Consider a single artificial neuron with d inputs. The neuron has d weights w 2 R d . The output of the neuron for an input pattern x 2 R d is y = OE(x \Delta w), where OE : R ! R is a transfer function. For a given sequence of training examples h(x t ; y t )i 1tm ; each consisting of a pattern x t 2 R d and a desired output y t 2 R, the goal of the training phase for neural networks consists of minimizing the error function with respect to the weight vector w 2 R d . This function is the sum of the losses between outputs of the neuron and the desired outputs summed over all training examples. In notation, the error function is E(w) = m X t=1 L(y t ; OE(x t \Delta w)) ; where L : R \Theta R ! [0; 1) is the loss function. Acommon example of a transfer function...