Results 1  10
of
911
Hierarchical mixtures of experts and the EM algorithm
 Neural Computation
, 1994
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 724 (19 self)
 Add to MetaCart
We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood problem; in particular, we present an ExpectationMaximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an online learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain. 1
Probabilistic Principal Component Analysis
 Journal of the Royal Statistical Society, Series B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 476 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss, with illustrative examples, the advantages conveyed by this probabilistic approach to PCA. Keywords: Principal component analysis
Multitask Learning
 MACHINE LEARNING
, 1997
"... Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task ..."
Abstract

Cited by 467 (7 self)
 Add to MetaCart
Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with knearest neighbor and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how multitask learning works, and show that there are many opportunities for multitask learning in real domains. We present an algorithm and results for multitask learning with casebased methods like knearest neighbor and kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we conjecture there will be many opportunities for its use on realworld problems.
GTM: The generative topographic mapping
 Neural Computation
, 1998
"... Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper ..."
Abstract

Cited by 280 (5 self)
 Add to MetaCart
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of nonlinear latent variable model called the Generative Topographic Mapping for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used SelfOrganizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multiphase oil pipeline. Copyright c○MIT Press (1998). 1
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and Kmeans clu ..."
Abstract

Cited by 279 (20 self)
 Add to MetaCart
Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and Kmeans clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data.
A Unifying Review of Linear Gaussian Models
, 1999
"... Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observa ..."
Abstract

Cited by 263 (17 self)
 Add to MetaCart
Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models.
Supervised learning from incomplete data via an EM approach
 Advances in Neural Information Processing Systems 6
, 1994
"... Realworld learning tasks may involve highdimensional data sets with arbitrary patterns of missing data. In this paper we present a framework based on maximum likelihood density estimation for learning from such data sets. We use mixture models for the density estimates and make two distinct appeal ..."
Abstract

Cited by 184 (2 self)
 Add to MetaCart
Realworld learning tasks may involve highdimensional data sets with arbitrary patterns of missing data. In this paper we present a framework based on maximum likelihood density estimation for learning from such data sets. We use mixture models for the density estimates and make two distinct appeals to the ExpectationMaximization (EM) principle (Dempster et al., 1977) in deriving a learning algorithmEM is used both for the estimation of mixture components and for coping with missing data. The resulting algorithm is applicable to a wide range of supervised as well as unsupervised learning problems. Results from a classification benchmarkthe iris data setare presented. 1 Introduction Adaptive systems generally operate in environments that are fraught with imperfections; nonetheless they must cope with these imperfections and learn to extract as much relevant information as needed for their particular goals. One form of imperfection is incompleteness in sensing information. Inc...
Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score
, 2000
"... We are interested in estimating the average e#ect of a binary treatment on a scalar outcome. If assignment to the treatment is independent of the potential outcomes given pretreatment variables, biases associated with simple treatmentcontrol average comparisons can be removed by adjusting for di#er ..."
Abstract

Cited by 168 (15 self)
 Add to MetaCart
We are interested in estimating the average e#ect of a binary treatment on a scalar outcome. If assignment to the treatment is independent of the potential outcomes given pretreatment variables, biases associated with simple treatmentcontrol average comparisons can be removed by adjusting for di#erences in the pretreatmentvariables. Rosenbaum and Rubin #1983, 1984# show that adjusting solely for di#erences between treated and control units in a scalar function of the pretreatment variables, the propensity score, also removes the entire bias associated with di#erences in pretreatment variables. Thus it is possible to obtain unbiased estimates of the treatment e#ect without conditioning on a possibly highdimensional vector of pretreatment variables. Although adjusting for the propensity score removes all the bias, this can come at the expense of e#ciency. We show that weighting with the inverse of a nonparametric estimate of the propensity score, rather than the true propensity scor...
Preliminary Guidelines for Empirical Research in Software Engineering
 IEEE Transactions on Software Engineering
, 2002
"... propose a preliminary set of research guidelines aimed at stimulating discussion among software researchers. They are based on a review of research guidelines developed for medical researchers and on our own experience in doing and reviewing software engineering research. The guidelines are intended ..."
Abstract

Cited by 131 (2 self)
 Add to MetaCart
propose a preliminary set of research guidelines aimed at stimulating discussion among software researchers. They are based on a review of research guidelines developed for medical researchers and on our own experience in doing and reviewing software engineering research. The guidelines are intended to assist researchers, reviewers, and metaanalysts in designing, conducting, and evaluating empirical studies. Editorial boards of software engineering journals may wish to use our recommendations as a basis for developing guidelines for reviewers and for framing policies for dealing with the design, data collection, and analysis and reporting of empirical studies. Index TermsÐEmpirical software research, research guidelines, statistical mistakes. 1
Convergence results for the EM Approach to Mixtures of Experts Architectures
 NEURAL NETWORKS
, 1995
"... The ExpectationMaximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architectur ..."
Abstract

Cited by 96 (6 self)
 Add to MetaCart
The ExpectationMaximization (EM) algorithm is an iterative approach to maximum likelihood parameter estimation. Jordan and Jacobs recently proposed an EM algorithm for the mixture of experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of experts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for these architectures yields significantly faster convergence than gradient ascent. In the current paper we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a variable metric algorithm with its searching direction having a positive projection on the gradient of the log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for the convergence rate. In addition, we describe an acceleration technique that yields a significant speedup in simulation experiments.