Results 1 
3 of
3
Generalization of Rough Sets using Modal Logics
 Intelligent Automation and Soft Computing, an International Journal
"... The theory of rough sets is an extension of set theory with two additional unary settheoretic operators defined based on a binary relation on the universe. These two operators are related to the modal operators in modal logics. By exploring the relationship between rough sets and modal logics, this ..."
Abstract

Cited by 43 (20 self)
 Add to MetaCart
The theory of rough sets is an extension of set theory with two additional unary settheoretic operators defined based on a binary relation on the universe. These two operators are related to the modal operators in modal logics. By exploring the relationship between rough sets and modal logics, this paper proposes and examines a number of extended rough set models. By the properties satisfied by a binary relation, such as serial, reflexive, symmetric, transitive, and Euclidean, various classes of algebraic rough set models can be derived. They correspond to different modal logic systems. With respect to graded and probabilistic modal logics, graded and probabilistic rough set models are also discussed. Keywords Rough sets, modal logic, rough set operators, graded rough sets, probabilistic rough sets. 1 Introduction The theory of rough sets is an extension of set theory, in which a subset of a universe is described by a pair of ordinary sets called the lower and upper approximations [2...
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 25 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
PSPACE bounds for rank 1 modal logics
 In LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.