Results 1  10
of
34
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 36 (19 self)
 Add to MetaCart
(Show Context)
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
Modular algorithms for heterogeneous modal logics
 IN AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP 07, VOL. 4596 OF LNCS
, 2007
"... Statebased systems and modal logics for reasoning about them often heterogeneously combine a number of features such as nondeterminism and probabilities. Here, we show that the combination of features can be reflected algorithmically and develop modular decision procedures for heterogeneous modal ..."
Abstract

Cited by 22 (15 self)
 Add to MetaCart
(Show Context)
Statebased systems and modal logics for reasoning about them often heterogeneously combine a number of features such as nondeterminism and probabilities. Here, we show that the combination of features can be reflected algorithmically and develop modular decision procedures for heterogeneous modal logics. The modularity is achieved by formalising the underlying statebased systems as multisorted coalgebras and associating both a logical and an algorithmic description to a number of basic building blocks. Our main result is that logics arising as combinations of these building blocks can be decided in polynomial space provided that this is the case for the components. By instantiating the general framework to concrete cases, we obtain PSPACE decision procedures for a wide variety of structurally different logics, describing e.g. Segala systems and games with uncertain information.
Rank1 modal logics are coalgebraic
 IN STACS 2007, 24TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, PROCEEDINGS
, 2007
"... Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coal ..."
Abstract

Cited by 21 (14 self)
 Add to MetaCart
(Show Context)
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular generic decision procedures and upper complexity bounds, become applicable to arbitrary rank 1 modal logics, without regard to their semantic status; we thus obtain purely syntactic versions of these results. As an extended example, we apply our framework to recently defined deontic logics.
Coalgebraic hybrid logic
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 09, VOLUME 5504 OF LNCS
, 2009
"... We introduce a generic framework for hybrid logics, i.e. modal logics additionally featuring nominals and satisfaction operators, thus providing the necessary facilities for reasoning about individual states in a model. This framework, coalgebraic hybrid logic, works at the same level of generality ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
(Show Context)
We introduce a generic framework for hybrid logics, i.e. modal logics additionally featuring nominals and satisfaction operators, thus providing the necessary facilities for reasoning about individual states in a model. This framework, coalgebraic hybrid logic, works at the same level of generality as coalgebraic modal logic, and in particular subsumes, besides normal hybrid logics such as hybrid K, a wide variety of logics with nonnormal modal operators such as probabilistic, graded, or coalitional modalities and nonmonotonic conditionals. We prove a generic finite model property and an ensuing weak completeness result, and we give a semantic criterion for decidability in PSPACE. Moreover, we present a fully internalised PSPACE tableau calculus. These generic results are easily instantiated to particular hybrid logics and thus yield a wide range of new results, including e.g. decidability in PSPACE of probabilistic and graded hybrid logics.
Beyond rank 1: Algebraic semantics and finite models for coalgebraic logics
, 2008
"... Coalgebras provide a uniform framework for the semantics of a large class of (mostly nonnormal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model prop ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
Coalgebras provide a uniform framework for the semantics of a large class of (mostly nonnormal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model property for coalgebraic logics has been established w.r.t. the class of all structures appropriate for a given logic at hand; the corresponding modal logics are characterised by being axiomatised in rank 1, i.e. without nested modalities. Here, we extend the range of coalgebraic techniques to cover logics that impose global properties on their models, formulated as frame conditions with possibly nested modalities on the logical side (in generalisation of frame conditions such as symmetry or transitivity in the context of Kripke frames). We show that the finite model property for such logics follows from the finite algebra property of the associated class of complex algebras, and then investigate sufficient conditions for the finite algebra property to hold. Example applications include extensions of coalition logic and logics of uncertainty and knowledge.
An algebra for Kripke polynomial coalgebras
 24TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE
, 2009
"... Several dynamical systems, such as deterministic automata and labelled transition systems, can be described as coalgebras of socalled Kripke polynomial functors, built up from constants and identities, using product, coproduct and powerset. Locally finite Kripke polynomial coalgebras can be charact ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Several dynamical systems, such as deterministic automata and labelled transition systems, can be described as coalgebras of socalled Kripke polynomial functors, built up from constants and identities, using product, coproduct and powerset. Locally finite Kripke polynomial coalgebras can be characterized up to bisimulation by a specification language that generalizes Kleene’s regular expressions for finite automata. In this paper, we equip this specification language with an axiomatization and prove it sound and complete with respect to bisimulation, using a purely coalgebraic argument. We demonstrate the usefulness of our framework by providing a finite equational system for (non)deterministic finite automata, labelled transition systems with explicit termination, and automata on guarded strings.
Modal Logics are Coalgebraic
, 2008
"... Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large vari ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
(Show Context)
Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pickandchoose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors ’ firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility.
Admissibility of Cut in Coalgebraic Logics
 CMCS
, 2008
"... We study sequent calculi for propositional modal logics, interpreted over coalgebras, with admissibility of cut being the main result. As applications we present a new proof of the (already known) interpolation property for coalition logic and establish the interpolation property for the conditional ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
We study sequent calculi for propositional modal logics, interpreted over coalgebras, with admissibility of cut being the main result. As applications we present a new proof of the (already known) interpolation property for coalition logic and establish the interpolation property for the conditional logics CK and CK Id.
On modal logics of linear inequalities
 Proc. AiML 2010
, 2010
"... We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear inequalities may be used to express numerical constraints between quantities. For each of the logics, we construct a cutfree sequent calculus and show soundness with respect to a natural class of mode ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
(Show Context)
We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear inequalities may be used to express numerical constraints between quantities. For each of the logics, we construct a cutfree sequent calculus and show soundness with respect to a natural class of models. The completeness of the associated sequent calculi is then established with the help of coalgebraic semantics which gives completeness over a (typically much smaller) class of models. With respect to either semantics, it follows that the satisfiability problem of each of these logics is decidable in polynomial space. Keywords: Probabilistic modal logic, graded modal logic, linear inequalities
EXPTIME tableaux for the coalgebraic µ calculus
 Proc. CSL 2009, volume 5771 of Lecture Notes in Computer Science
, 2009
"... Abstract. The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduce the coalgebraic µcalculus, an ext ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Abstract. The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduce the coalgebraic µcalculus, an extension of the general (coalgebraic) framework with fixpoint operators. Our main results are completeness of the associated tableau calculus and EXPTIME decidability. Technically, this is achieved by reducing satisfiability to the existence of nonwellfounded tableaux, which is in turn equivalent to the existence of winning strategies in parity games. Our results are parametric in the underlying class of models and yield, as concrete applications, previously unknown complexity bounds for the probabilistic µcalculus and for an extension of coalition logic with fixpoints. 1