Results 1  10
of
15
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 25 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
Rank1 modal logics are coalgebraic
 IN STACS 2007, 24TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, PROCEEDINGS
, 2007
"... Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coal ..."
Abstract

Cited by 14 (11 self)
 Add to MetaCart
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular generic decision procedures and upper complexity bounds, become applicable to arbitrary rank 1 modal logics, without regard to their semantic status; we thus obtain purely syntactic versions of these results. As an extended example, we apply our framework to recently defined deontic logics.
Coalgebraic hybrid logic
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 09, VOLUME 5504 OF LNCS
, 2009
"... We introduce a generic framework for hybrid logics, i.e. modal logics additionally featuring nominals and satisfaction operators, thus providing the necessary facilities for reasoning about individual states in a model. This framework, coalgebraic hybrid logic, works at the same level of generality ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
We introduce a generic framework for hybrid logics, i.e. modal logics additionally featuring nominals and satisfaction operators, thus providing the necessary facilities for reasoning about individual states in a model. This framework, coalgebraic hybrid logic, works at the same level of generality as coalgebraic modal logic, and in particular subsumes, besides normal hybrid logics such as hybrid K, a wide variety of logics with nonnormal modal operators such as probabilistic, graded, or coalitional modalities and nonmonotonic conditionals. We prove a generic finite model property and an ensuing weak completeness result, and we give a semantic criterion for decidability in PSPACE. Moreover, we present a fully internalised PSPACE tableau calculus. These generic results are easily instantiated to particular hybrid logics and thus yield a wide range of new results, including e.g. decidability in PSPACE of probabilistic and graded hybrid logics.
CoLoSS: The Coalgebraic Logic Satisfiability Solver (System Description)
, 2007
"... CoLoSS, the Coalgebraic Logic Satisfiability Solver, decides satisfiability of modal formulas in a generic and compositional way. It implements a uniform polynomial space algorithm to decide satisfiability for modal logics that are amenable to coalgebraic semantics. This includes e.g. the logics K, ..."
Abstract

Cited by 7 (7 self)
 Add to MetaCart
CoLoSS, the Coalgebraic Logic Satisfiability Solver, decides satisfiability of modal formulas in a generic and compositional way. It implements a uniform polynomial space algorithm to decide satisfiability for modal logics that are amenable to coalgebraic semantics. This includes e.g. the logics K, KD, Pauly’s coalition logic, graded modal logic, and probabilistic modal logic. Logics are easily integrated into CoLoSS by providing a complete axiomatisation of their coalgebraic semantics in a specific format. Moreover, CoLoSS is compositional: it synthesises decision procedures for modular combinations of logics that include the fusion of two modal logics as a special case. One thus automatically obtains reasoning support e.g. for logics interpreted over probabilistic automata that combine nondeterminism and probabilities in different ways.
Shallow Models for NonIterative Modal Logics
"... Modal logics see a wide variety of applications in artificial intelligence, e.g. in reasoning about knowledge, belief, uncertainty, agency, defaults, and relevance. From the perspective of applications, the attractivity of modal logics stems from a combination of expressive power and comparatively l ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
Modal logics see a wide variety of applications in artificial intelligence, e.g. in reasoning about knowledge, belief, uncertainty, agency, defaults, and relevance. From the perspective of applications, the attractivity of modal logics stems from a combination of expressive power and comparatively low computational complexity. Compared to the classical treatment of modal logics with relational semantics, the use of modal logics in AI has two characteristic traits: Firstly, a large and growing variety of logics is used, adapted to the concrete situation at hand, and secondly, these logics are often nonnormal. Here, we present a shallow model construction that witnesses PSPACE bounds for a broad class of mostly nonnormal modal logics. Our approach is uniform and generic: we present general criteria that uniformly apply to and are easily checked in large numbers of examples. Thus, we not only reprove known complexity bounds for a wide variety of structurally different logics and obtain previously unknown PSPACEbounds, e.g. for Elgesem’s logic of agency, but also lay the foundations upon which the complexity of newly emerging logics can be determined.
Modal Logics are Coalgebraic
, 2008
"... Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large vari ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pickandchoose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors ’ firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility.
On modal logics of linear inequalities
 Proc. AiML 2010
, 2010
"... We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear inequalities may be used to express numerical constraints between quantities. For each of the logics, we construct a cutfree sequent calculus and show soundness with respect to a natural class of mode ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear inequalities may be used to express numerical constraints between quantities. For each of the logics, we construct a cutfree sequent calculus and show soundness with respect to a natural class of models. The completeness of the associated sequent calculi is then established with the help of coalgebraic semantics which gives completeness over a (typically much smaller) class of models. With respect to either semantics, it follows that the satisfiability problem of each of these logics is decidable in polynomial space. Keywords: Probabilistic modal logic, graded modal logic, linear inequalities
An easy completeness proof for the modal µcalculus on finite trees
 FOSSACS 2010, volume 6014 of LNCS
"... Abstract. We give a complete axiomatization for the modal μcalculus on finite trees. While the completeness of our axiomatization already follows from a more powerful result by Igor Walukiewicz in [11], our proof is easier and uses very different tools, inspired from model theory. We show that our ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. We give a complete axiomatization for the modal μcalculus on finite trees. While the completeness of our axiomatization already follows from a more powerful result by Igor Walukiewicz in [11], our proof is easier and uses very different tools, inspired from model theory. We show that our approach generalizes to certain axiomatic extensions, and to the extension of the μcalculus with graded modalities. We hope that the method might be helpful for other completeness proofs as well. The μcalculus is an extension of modal logic with a fixpoint operator. In 1983, Dexter Kozen suggested an axiomatization and showed completeness for the aconjunctive fragment of the μcalculus (see, e.g., [7]). It took more than ten years to prove completeness. This proof is due to Igor Walukiewicz [11] and is quite involved. It uses tableaux and the notion of disjunctive formula. We propose here a simpler proof in a particular case. More precisely, we prove the completeness of the Kozen axiomatization K μ extended with the axiom μx.□x with respect to the class of finite tree models. Finite trees are a fundamental
PSPACE bounds for rank 1 modal logics
 In LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
NAMED MODELS IN COALGEBRAIC HYBRID LOGIC
 SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
"... Hybrid logic extends modal logic with support for reasoning about individual states, designated by socalled nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning pr ..."
Abstract
 Add to MetaCart
Hybrid logic extends modal logic with support for reasoning about individual states, designated by socalled nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specifically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended hybrid language with local binding on the other. We instantiate our framework with a number of examples. Notably, we prove completeness of graded hybrid logic with local binding.