Results 1  10
of
52
On Hiding Information from an Oracle
, 1989
"... : We consider the problem of computing with encrypted data. Player A wishes to know the value f(x) for some x but lacks the power to compute it. Player B has the power to compute f and is willing to send f(y) to A if she sends him y, for any y. Informally, an encryption scheme for the problem f is a ..."
Abstract

Cited by 129 (15 self)
 Add to MetaCart
: We consider the problem of computing with encrypted data. Player A wishes to know the value f(x) for some x but lacks the power to compute it. Player B has the power to compute f and is willing to send f(y) to A if she sends him y, for any y. Informally, an encryption scheme for the problem f is a method by which A, using her inferior resources, can transform the cleartext instance x into an encrypted instance y, obtain f(y) from B, and infer f(x) from f(y) in such a way that B cannot infer x from y. When such an encryption scheme exists, we say that f is encryptable. The framework defined in this paper enables us to prove precise statements about what an encrypted instance hides and what it leaks, in an informationtheoretic sense. Our definitions are cast in the language of probability theory and do not involve assumptions such as the intractability of factoring or the existence of oneway functions. We use our framework to describe encryption schemes for some wellknown function...
A Taxonomy of Complexity Classes of Functions
 Journal of Computer and System Sciences
, 1992
"... This paper comprises a systematic comparison of several complexity classes of functions that are computed nondeterministically in polynomial time or with an oracle in NP. There are three components to this work. ffl A taxonomy is presented that demonstrates all known inclusion relations of these cla ..."
Abstract

Cited by 88 (12 self)
 Add to MetaCart
This paper comprises a systematic comparison of several complexity classes of functions that are computed nondeterministically in polynomial time or with an oracle in NP. There are three components to this work. ffl A taxonomy is presented that demonstrates all known inclusion relations of these classes. For (nearly) each inclusion that is not shown to hold, evidence is presented to indicate that the inclusion is false. As an example, consider FewPF, the class of multivalued functions that are nondeterministically computable in polynomial time such that for each x, there is a polynomial bound on the number of distinct output values of f(x). We show that FewPF ` PF NP tt . However, we show PF NP tt ` FewPF if and only if NP = coNP, and thus PF NP tt ` FewPF is likely to be false. ffl Whereas it is known that P NP (O(log n)) = P NP tt ` P NP [Hem87, Wagb, BH88], we show that PF NP (O(log n)) = PF NP tt implies P = FewP and R = NP. Also, we show that PF NP tt = PF ...
Some Connections between Bounded Query Classes and NonUniform Complexity
 In Proceedings of the 5th Structure in Complexity Theory Conference
, 1990
"... This paper is dedicated to the memory of Ronald V. Book, 19371997. ..."
Abstract

Cited by 71 (23 self)
 Add to MetaCart
This paper is dedicated to the memory of Ronald V. Book, 19371997.
Computing Solutions Uniquely Collapses the Polynomial Hierarchy
 SIAM Journal on Computing
, 1993
"... Is there a singlevalued NP function that, when given a satisfiable formula as input, outputs a satisfying assignment? That is, can a nondeterministic function cull just one satisfying assignment from a possibly exponentially large collection of assignments? We show that if there is such a nondeterm ..."
Abstract

Cited by 40 (23 self)
 Add to MetaCart
Is there a singlevalued NP function that, when given a satisfiable formula as input, outputs a satisfying assignment? That is, can a nondeterministic function cull just one satisfying assignment from a possibly exponentially large collection of assignments? We show that if there is such a nondeterministic function, then the polynomial hierarchy collapses to its second level. As the existence of such a function is known to be equivalent to the statement "every multivalued NP function has a singlevalued NP refinement," our result provides the strongest evidence yet that multivalued NP functions cannot be refined. We prove our result via theorems of independent interest. We say that a set A is NPSVselective (NPMVselective) if there is a 2ary partial function in NPSV (NPMV, respectively) that decides which of its inputs (if any) is "more likely" to belong to A; this is a nondeterministic analog of the recursiontheoretic notion of the semirecursive sets and the extant complexitythe...
PSelective Sets, and Reducing Search to Decision vs. SelfReducibility
, 1993
"... We obtain several results that distinguish selfreducibility of a language L with the question of whether search reduces to decision for L. These include: (i) If NE 6= E, then there exists a set L in NP \Gamma P such that search reduces to decision for L, search does not nonadaptively reduces to de ..."
Abstract

Cited by 39 (9 self)
 Add to MetaCart
We obtain several results that distinguish selfreducibility of a language L with the question of whether search reduces to decision for L. These include: (i) If NE 6= E, then there exists a set L in NP \Gamma P such that search reduces to decision for L, search does not nonadaptively reduces to decision for L, and L is not selfreducible. Funding for this research was provided by the National Science Foundation under grant CCR9002292. y Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall, Buffalo, NY 14260 z Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall, Buffalo, NY 14260 x Research performed while visiting the Department of Computer Science, State University of New York at Buffalo, Jan. 1992Dec. 1992. Current address: Department of Computer Science, University of ElectroCommunications, Chofushi, Tokyo 182, Japan.  Department of Computer Science, State University of New York at Buffalo, 226...
Threshold Computation and Cryptographic Security
 SIAM JOURNAL ON COMPUTING
, 1995
"... Threshold machines are Turing machines whose acceptance is determined by what portion of the machine's computation paths are accepting paths. Probabilistic machines are Turing machines whose acceptance is determined by the probability weight of the machine's accepting computation paths. In 1975, ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
Threshold machines are Turing machines whose acceptance is determined by what portion of the machine's computation paths are accepting paths. Probabilistic machines are Turing machines whose acceptance is determined by the probability weight of the machine's accepting computation paths. In 1975, Simon proved that for unboundederror polynomialtime machines these two notions yield the same class, PP. Perhaps because Simon's result seemed to collapse the threshold and probabilistic modes of computation, the relationship between threshold and probabilistic computing for the case of bounded error has remained unexplored. In this paper, we compare the boundederror probabilistic class BPP with the analogous threshold class, BPP path , and, more generally, we study the structural properties of BPP path . We prove that BPP path contains both NP BPP and P NP[log] , and that BPP path is contained in P \Sigma p 2 [log] , BPP NP , and PP. We conclude that, unless the polynomial hierarchy collapses, boundederror threshold computation is strictly more powerful than boundederror probabilistic computation. We also consider the natural notion of secure access to a database: an adversary who watches the queries should gain no information about the input other than perhaps its length. We show, for both BPP and BPP path , that if there is any database for which this formalization of security differs from the security given by oblivious database access, then P 6= PSPACE. It follows that if any set lacking small circuits can be securely accepted, then P 6= PSPACE.
Inverting Onto Functions
, 1996
"... We look at the hypothesis that all honest onto polynomialtime computable functions have a polynomialtime computable inverse. We show this hypothesis equivalent to several other complexity conjectures including ffl In polynomial time, one can find accepting paths of nondeterministic polynomialtim ..."
Abstract

Cited by 35 (5 self)
 Add to MetaCart
We look at the hypothesis that all honest onto polynomialtime computable functions have a polynomialtime computable inverse. We show this hypothesis equivalent to several other complexity conjectures including ffl In polynomial time, one can find accepting paths of nondeterministic polynomialtime Turing machines that accept \Sigma . ffl Every total multivalued nondeterministic function has a polynomialtime computable refinement. ffl In polynomial time, one can compute satisfying assignments for any polynomialtime computable set of satisfiable formulae. ffl In polynomial time, one can convert the accepting computations of any nondeterministic Turing machine that accepts SAT to satisfying assignments. We compare these hypotheses with several other important complexity statements. We also examine the complexity of these statements where we only require a single bit instead of the entire inverse. 1 Introduction Understanding the power of nondeterminism has been one of the pri...
Turing Machines With Few Accepting Computations And Low Sets For PP
, 1992
"... this paper we study two different ways to restrict the power of NP: We consider languages accepted by nondeterministic polynomial time machines with a small number of accepting paths in case of acceptance, and also investigate subclasses of NP that are low for complexity classes not known to be in t ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
this paper we study two different ways to restrict the power of NP: We consider languages accepted by nondeterministic polynomial time machines with a small number of accepting paths in case of acceptance, and also investigate subclasses of NP that are low for complexity classes not known to be in the polynomial time hierarchy. The first complexity class defined following the idea of bounding the number of accepting paths was Valiant's class UP (unique P) [Va76] of languages accepted by nondeterministic Turing machines that have exactly one accepting computation path for strings in the language, and none for strings not in the language. This class plays an important role in the areas of oneway functions and cryptography, for example in [GrSe84] it is shown that P6=UP if and only if oneway functions exist. The class UP can be generalized in a natural way by allowing a polynomial number of accepting paths. This gives rise to the class FewP defined by Allender [Al85] in connection with the notion of Pprintable sets. We study complexity classes defined by such pathrestricted nondeterministic polynomial time machines, and show results that exploit the fact that the machines for these classes have a bounded number of accepting computation paths. We will not only consider these subclasses of NP, namely UP and FewP, but also the class Few, an extension of FewP defined by Cai and Hemachandra [CaHe89], in which the accepting mechanism of the machine is more flexible. 1 The three classes UP, FewP and Few are all defined in terms of nondeterministic machines with a bounded number of accepting paths for every input string, but for the last two classes this number is not known beforehand, and can range over a space of polynomial size. We show in Section 3 that a polynomial numb...
NPhard Sets are PSuperterse Unless R = NP
, 1992
"... A set A is pterse (psuperterse) if, for all q, it is not possible to answer q queries to A by making only q \Gamma 1 queries to A (any set X). Formally, let PF A qtt be the class of functions reducible to A via a polynomialtime truthtable reduction of norm q, and let PF A qT be the class of ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
A set A is pterse (psuperterse) if, for all q, it is not possible to answer q queries to A by making only q \Gamma 1 queries to A (any set X). Formally, let PF A qtt be the class of functions reducible to A via a polynomialtime truthtable reduction of norm q, and let PF A qT be the class of functions reducible to A via a polynomialtime Turing reduction that makes at most q queries. A set A is pterse if PF A qtt 6` PF A (q\Gamma1)T for all constants q. A is psuperterse if PF A qtt 6` PF X qT for all constants q and sets X . We show that all NPhard sets (under p tt reductions) are psuperterse, unless it is possible to distinguish uniquely satisfiable formulas from satisfiable formulas in polynomial time. Consequently, all NPcomplete sets are psuperterse unless P = UP (oneway functions fail to exist), R = NP (there exist randomized polynomialtime algorithms for all problems in NP), and the polynomialtime hierarchy collapses. This mostly solves the main open...
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.