Results 1  10
of
28
Compositionality for probabilistic automata
 In Proc. 14th International Conference on Concurrency Theory (CONCUR 2003), volume 2761 of LNCS
, 2003
"... x ..."
Expressivity of coalgebraic modal logic: The limits and beyond
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, VOLUME 3441 OF LNCS
, 2005
"... Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, c ..."
Abstract

Cited by 39 (13 self)
 Add to MetaCart
Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, conversely, logically indistinguishable states are behaviorally equivalent depend on the existence of separating sets of predicate liftings for the signature functor at hand. Here, we provide a classification result for predicate liftings which leads to an easy criterion for the existence of such separating sets, and we give simple examples of functors that fail to admit expressive normal or monotone modal logics, respectively, or in fact an expressive (unary) modal logic at all. We then move on to polyadic modal logic, where modal operators may take more than one argument formula. We show that every accessible functor admits an expressive polyadic modal logic. Moreover, expressive polyadic modal logics are, unlike unary modal logics, compositional.
Probabilistic Automata: System Types, Parallel Composition and Comparison
 In Validation of Stochastic Systems: A Guide to Current Research
, 2004
"... We survey various notions of probabilistic automata and probabilistic bisimulation, accumulating in an expressiveness hierarchy of probabilistic system types. The aim of this paper is twofold: On the one hand it provides an overview of existing types of probabilistic systems and, on the other ha ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
We survey various notions of probabilistic automata and probabilistic bisimulation, accumulating in an expressiveness hierarchy of probabilistic system types. The aim of this paper is twofold: On the one hand it provides an overview of existing types of probabilistic systems and, on the other hand, it explains the relationship between these models.
PSPACE bounds for rank 1 modal logics
 IN LICS’06
, 2006
"... For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a sh ..."
Abstract

Cited by 26 (15 self)
 Add to MetaCart
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACEbounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant prooftheoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
A Finite Model Construction For Coalgebraic Modal Logic
"... In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness result ..."
Abstract

Cited by 24 (16 self)
 Add to MetaCart
In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard HennessyMilner logic, graded modal logic and probabilistic modal logic.
Modular construction of modal logics
 Concurrency Theory, CONCUR 04, volume 3170 of Lect. Notes Comput. Sci
, 2004
"... Abstract. We present a modular approach to defining logics for a wide variety of statebased systems. We use coalgebras to model the behaviour of systems, and modal logics to specify behavioural properties of systems. We show that the syntax, semantics and proof systems associated to such logics can ..."
Abstract

Cited by 22 (7 self)
 Add to MetaCart
Abstract. We present a modular approach to defining logics for a wide variety of statebased systems. We use coalgebras to model the behaviour of systems, and modal logics to specify behavioural properties of systems. We show that the syntax, semantics and proof systems associated to such logics can all be derived in a modular way. Moreover, we show that the logics thus obtained inherit soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound, complete and expressive logics for a wide variety of probabilistic systems. 1
Modular algorithms for heterogeneous modal logics
 IN AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP 07, VOL. 4596 OF LNCS
, 2007
"... Statebased systems and modal logics for reasoning about them often heterogeneously combine a number of features such as nondeterminism and probabilities. Here, we show that the combination of features can be reflected algorithmically and develop modular decision procedures for heterogeneous modal ..."
Abstract

Cited by 16 (11 self)
 Add to MetaCart
Statebased systems and modal logics for reasoning about them often heterogeneously combine a number of features such as nondeterminism and probabilities. Here, we show that the combination of features can be reflected algorithmically and develop modular decision procedures for heterogeneous modal logics. The modularity is achieved by formalising the underlying statebased systems as multisorted coalgebras and associating both a logical and an algorithmic description to a number of basic building blocks. Our main result is that logics arising as combinations of these building blocks can be decided in polynomial space provided that this is the case for the components. By instantiating the general framework to concrete cases, we obtain PSPACE decision procedures for a wide variety of structurally different logics, describing e.g. Segala systems and games with uncertain information.
Observing Branching Structure through Probabilistic Contexts
 SIAM J. Comput
"... Abstract. Probabilistic automata (PAs) constitute a general framework for modeling and analyzing discrete event systems that exhibit both nondeterministic and probabilistic behavior, such as distributed algorithms and network protocols. The behavior of PAs is commonly defined using schedulers (also ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
Abstract. Probabilistic automata (PAs) constitute a general framework for modeling and analyzing discrete event systems that exhibit both nondeterministic and probabilistic behavior, such as distributed algorithms and network protocols. The behavior of PAs is commonly defined using schedulers (also called adversaries or strategies), which resolve all nondeterministic choices based on past history. From the resulting purely probabilistic structures, trace distributions can be extracted, whose intent is to capture the observable behavior of a PA. However, when PAs are composed via an (asynchronous) parallel composition operator, a global scheduler may establish strong correlations between the behavior of system components and, for example, resolve nondeterministic choices in one PA based on the outcome of probabilistic choices in the other. It is well known that, as a result of this, the (lineartime) trace distribution precongruence is not compositional for PAs. In his 1995 Ph.D. thesis, Segala has shown that the (branchingtime) probabilistic simulation preorder is compositional for PAs. In this paper, we establish that the simulation preorder is, in fact, the coarsest refinement of the trace distribution preorder that is compositional. We prove our characterization result by providing (1) a context of a given PA A, called the tester, which may announce the state of A to the outside world, and (2) a specific global scheduler, called the observer, which ensures that the state information that is announced is actually correct. Now when another PA B is composed with the tester, it may generate the same external behavior as the observer only when it is able to simulate A in the sense that whenever A goes to some state s, B can go to a corresponding state u, from which it may generate the same external behavior. Our result shows that probabilistic contexts together with global schedulers are able to exhibit the branching structure of PAs.
Probability and Nondeterminism in Operational Models of Concurrency
 In Proc. CONCUR, LNCS
, 2006
"... Abstract. We give a brief overview of operational models for concurrent systems that exhibit probabilistic behavior, focussing on the interplay between probability and nondeterminism. Our survey is carried out from the perspective of probabilistic automata, a model originally developed for the analy ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Abstract. We give a brief overview of operational models for concurrent systems that exhibit probabilistic behavior, focussing on the interplay between probability and nondeterminism. Our survey is carried out from the perspective of probabilistic automata, a model originally developed for the analysis of randomized distributed algorithms. 1
SOS formats and metatheory: 20 years after
, 2007
"... In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [G.D. Plotkin, A structural approach to operational semantics, Technical ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [G.D. Plotkin, A structural approach to operational semantics, Technical