Results 1  10
of
112
Nearly tight bounds for the continuumarmed bandit problem
 Advances in Neural Information Processing Systems 17
, 2005
"... In the multiarmed bandit problem, an online algorithm must choose from a set of strategies in a sequence of n trials so as to minimize the total cost of the chosen strategies. While nearly tight upper and lower bounds are known in the case when the strategy set is finite, much less is known when th ..."
Abstract

Cited by 69 (4 self)
 Add to MetaCart
In the multiarmed bandit problem, an online algorithm must choose from a set of strategies in a sequence of n trials so as to minimize the total cost of the chosen strategies. While nearly tight upper and lower bounds are known in the case when the strategy set is finite, much less is known when there is an infinite strategy set. Here we consider the case when the set of strategies is a subset of R d, and the cost functions are continuous. In the d = 1 case, we improve on the bestknown upper and lower bounds, closing the gap to a sublogarithmic factor. We also consider the case where d> 1 and the cost functions are convex, adapting a recent online convex optimization algorithm of Zinkevich to the sparser feedback model of the multiarmed bandit problem. 1
Approximation Algorithms and Online Mechanisms for Item Pricing
 IN ACM CONFERENCE ON ELECTRONIC COMMERCE
, 2005
"... We present approximation and online algorithms for a number of problems of pricing items for sale so as to maximize seller's revenue in an unlimited supply setting. Our first result is an O(k)approximation algorithm for pricing items to singleminded bidders who each want at most k items. This impr ..."
Abstract

Cited by 58 (9 self)
 Add to MetaCart
We present approximation and online algorithms for a number of problems of pricing items for sale so as to maximize seller's revenue in an unlimited supply setting. Our first result is an O(k)approximation algorithm for pricing items to singleminded bidders who each want at most k items. This improves over recent independent work of Briest and Krysta [6] who achieve an O(k ) bound. For the case k = 2, where we obtain a 4approximation, this can be viewed as the following graph vertex pricing problem: given a (multi) graph G with valuations w e on the edges, find prices p i 0 for the vertices to maximize (p i + p j ) .
The multiplicative weights update method: a meta algorithm and applications
, 2005
"... Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies ..."
Abstract

Cited by 53 (10 self)
 Add to MetaCart
Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple instantiations of the meta algorithm. 1
Routing without regret: On convergence to nash equilibria of regretminimizing algorithms in routing games
 In PODC
, 2006
"... Abstract There has been substantial work developing simple, efficient noregret algorithms for a wideclass of repeated decisionmaking problems including online routing. These are adaptive strategies an individual can use that give strong guarantees on performance even in adversariallychanging envi ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
Abstract There has been substantial work developing simple, efficient noregret algorithms for a wideclass of repeated decisionmaking problems including online routing. These are adaptive strategies an individual can use that give strong guarantees on performance even in adversariallychanging environments. There has also been substantial work on analyzing properties of Nash equilibria in routing games. In this paper, we consider the question: if each player in a routing game uses a noregret strategy, will behavior converge to a Nash equilibrium? In general games the answer to this question is known to be no in a strong sense, but routing games havesubstantially more structure. In this paper we show that in the Wardrop setting of multicommodity flow and infinitesimalagents, behavior will approach Nash equilibrium (formally, on most days, the cost of the flow will be close to the cost of the cheapest paths possible given that flow) at a rate that dependspolynomially on the players ' regret bounds and the maximum slope of any latency function. We also show that priceofanarchy results may be applied to these approximate equilibria, and alsoconsider the finitesize (noninfinitesimal) loadbalancing model of Azar [2].
NearOptimal Online Auctions
 In Proceedings of the 16th Annual ACMSIAM Symposium on Discrete Algorithms
, 2005
"... Abstract We consider the online auction problem proposed byBarYossef, Hildrum, and Wu [4] in which an auctioneer is selling identical items to bidders arriving one at atime. We give an auction that achieves a constant factor of the optimal profit less an O(h) additive loss term,where h is the value ..."
Abstract

Cited by 45 (11 self)
 Add to MetaCart
Abstract We consider the online auction problem proposed byBarYossef, Hildrum, and Wu [4] in which an auctioneer is selling identical items to bidders arriving one at atime. We give an auction that achieves a constant factor of the optimal profit less an O(h) additive loss term,where h is the value of the highest bid. Furthermore,this auction does not require foreknowledge of the range of bidders ' valuations. On both counts, this answersopen questions from [4, 5]. We further improve on the results from [5] for the online postedprice problem by reducing their additive loss term from O(h log h log log h)to O(h log log h). Finally, we define the notion of an(offline) attribute auction for modeling the problem of auctioning items to consumers who are not apriori indistinguishable. We apply our online auction solution to achieve good bounds for the attribute auction problemwith 1dimensional attributes.
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
, 2010
"... Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common s ..."
Abstract

Cited by 42 (0 self)
 Add to MetaCart
Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common subgradient approaches are oblivious to the characteristics of the data being observed. We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradientbased learning. The adaptation, in essence, allows us to find needles in haystacks in the form of very predictive but rarely seenfeatures. Ourparadigmstemsfromrecentadvancesinstochasticoptimizationandonlinelearning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. In a companion paper, we validate experimentally our theoretical analysis and show that the adaptive subgradient approach outperforms stateoftheart, but nonadaptive, subgradient algorithms. 1
The pipelined set cover problem
, 2003
"... Abstract. A classical problem in query optimization is to find the optimal ordering of a set of possibly correlated selections. We provide an abstraction of this problem as a generalization of set cover called pipelined set cover, where the sets are applied sequentially to the elements to be covered ..."
Abstract

Cited by 30 (5 self)
 Add to MetaCart
Abstract. A classical problem in query optimization is to find the optimal ordering of a set of possibly correlated selections. We provide an abstraction of this problem as a generalization of set cover called pipelined set cover, where the sets are applied sequentially to the elements to be covered and the elements covered at each stage are discarded. We show that several natural heuristics for this NPhard problem, such as the greedy setcover heuristic and a localsearch heuristic, can be analyzed using a linearprogramming framework. These heuristics lead to efficient algorithms for pipelined set cover that can be applied to order possibly correlated selections in conventional database systems as well as datastream processing systems. We use our linearprogramming framework to show that the greedy and localsearch algorithms are 4approximations for pipelined set cover. We extend our analysis to minimize the lpnorm of the costs paid by the sets, where p ≥ 2 is an integer, to examine the improvement in performance when the total cost has increasing contribution from initial sets in the pipeline. Finally, we consider the online version of pipelined set cover and present a competitive algorithm with a logarithmic performance guarantee. Our analysis framework may be applicable to other problems in query optimization where it is important to account for correlations. 1
A new understanding of prediction markets via noregret learning
 In ACM EC
, 2010
"... We explore the striking mathematical connections that exist between market scoring rules, cost function based prediction markets, and noregret learning. We first show that any cost function based prediction market can be interpreted as an algorithm for the commonly studied problem of learning from ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
We explore the striking mathematical connections that exist between market scoring rules, cost function based prediction markets, and noregret learning. We first show that any cost function based prediction market can be interpreted as an algorithm for the commonly studied problem of learning from expert advice by equating the set of outcomes on which bets are placed in the market with the set of experts in the learning setting, and equating trades made in the market with losses observed by the learning algorithm. If the loss of the market organizer is bounded, this bound can be used to derive an O ( √ T) regret bound for the corresponding learning algorithm. We then show that the class of markets with convex cost functions exactly corresponds to the class of Follow the Regularized Leader learning algorithms, with the choice of a cost function in the market corresponding to the choice of a regularizer in the learning problem. Finally, we show an equivalence between market scoring rules and prediction markets with convex cost functions. This implies both that any market scoring rule can be implemented as a cost function based market maker, and that market scoring rules can be interpreted naturally as Follow the Regularized Leader algorithms. These connections provide new insight into how it is that commonly studied markets, such as the Logarithmic Market Scoring Rule, can aggregate opinions into accurate estimates of the likelihood of future events.
Learning permutations with exponential weights
 In 20th Annual Conference on Learning Theory
, 2007
"... Abstract. We give an algorithm for learning a permutation online. The algorithm maintains its uncertainty about the target permutation as a doubly stochastic matrix. This matrix is updated by multiplying the current matrix entries by exponential factors. These factors destroy the doubly stochastic ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
Abstract. We give an algorithm for learning a permutation online. The algorithm maintains its uncertainty about the target permutation as a doubly stochastic matrix. This matrix is updated by multiplying the current matrix entries by exponential factors. These factors destroy the doubly stochastic property of the matrix and an iterative procedure is needed to renormalize the rows and columns. Even though the result of the normalization procedure does not have a closed form, we can still bound the additional loss of our algorithm over the loss of the best permutation chosen in hindsight. 1
Selfimproving algorithms
 in SODA ’06: Proceedings of the seventeenth annual ACMSIAM symposium on Discrete algorithm
"... We investigate ways in which an algorithm can improve its expected performance by finetuning itself automatically with respect to an arbitrary, unknown input distribution. We give such selfimproving algorithms for sorting and computing Delaunay triangulations. The highlights of this work: (i) an al ..."
Abstract

Cited by 26 (4 self)
 Add to MetaCart
We investigate ways in which an algorithm can improve its expected performance by finetuning itself automatically with respect to an arbitrary, unknown input distribution. We give such selfimproving algorithms for sorting and computing Delaunay triangulations. The highlights of this work: (i) an algorithm to sort a list of numbers with optimal expected limiting complexity; and (ii) an algorithm to compute the Delaunay triangulation of a set of points with optimal expected limiting complexity. In both cases, the algorithm begins with a training phase during which it adjusts itself to the input distribution, followed by a stationary regime in which the algorithm settles to its optimized incarnation. 1