Results 1 
3 of
3
An Overview of the Computably Enumerable Sets
"... The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The purpose of this article is to summarize some of the results on the algebraic structure of the computably enumerable (c.e.) sets since 1987 when the subject was covered in Soare 1987 , particularly Chapters X, XI, and XV. We study the c.e. sets as a partial ordering under inclusion, (E; `). We do not study the partial ordering of the c.e. degrees under Turing reducibility, although a number of the results here relate the algebraic structure of a c.e. set A to its (Turing) degree in the sense of the information content of A. We consider here various properties of E: (1) deønable properties; (2) automorphisms; (3) invariant properties; (4) decidability and undecidability results; miscellaneous results. This is not intended to be a comprehensive survey of all results in the subject since 1987, but we give a number of references in the bibliography to other results.
Dynamic Properties of Computably Enumerable Sets
 In Computability, Enumerability, Unsolvability, volume 224 of London Math. Soc. Lecture Note Ser
, 1995
"... A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating t ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A set A ` ! is computably enumerable (c.e.), also called recursively enumerable, (r.e.), or simply enumerable, if there is a computable algorithm to list its members. Let E denote the structure of the c.e. sets under inclusion. Starting with Post [1944] there has been much interest in relating the denable (especially Edenable) properties of a c.e. set A to its iinformation contentj, namely its Turing degree, deg(A), under T , the usual Turing reducibility. [Turing 1939]. Recently, Harrington and Soare answered a question arising from Post's program by constructing a nonemptly Edenable property Q(A) which guarantees that A is incomplete (A !T K). The property Q(A) is of the form (9C)[A ae m C & Q \Gamma (A; C)], where A ae m C abbreviates that iA is a major subset of Cj, and Q \Gamma (A; C) contains the main ingredient for incompleteness. A dynamic property P (A), such as prompt simplicity, is one which is dened by considering how fast elements elements enter A relat...