Results 1 
4 of
4
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
Computable Banach Spaces via Domain Theory
 Theoretical Computer Science
, 1998
"... This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of clos ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper extends the ordertheoretic approach to computable analysis via continuous domains to complete metric spaces and Banach spaces. We employ the domain of formal balls to define a computability theory for complete metric spaces. For Banach spaces, the domain specialises to the domain of closed balls, ordered by reversed inclusion. We characterise computable linear operators as those which map computable sequences to computable sequences and are effectively bounded. We show that the domaintheoretic computability theory is equivalent to the wellestablished approach by PourEl and Richards. 1 Introduction This paper is part of a programme to introduce the theory of continuous domains as a new approach to computable analysis. Initiated by the various applications of continuous domain theory to modelling classical mathematical spaces and performing computations as outlined in the recent survey paper by Edalat [6], the authors started this work with [9] which was concerned with co...
Metric Spaces in Synthetic Topology
, 2010
"... We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and me ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and metric topologies of complete separable metric spaces coincide if they do so for Baire space. In Russian Constructivism the match between synthetic and metric topology breaks down, as even a very simple complete totally bounded space fails to be compact, and its topology is strictly finer than the metric topology. In contrast, in Brouwer’s intuitionism synthetic and metric notions of topology and compactness agree. 1
Kleene’s Amazing Second Recursion Theorem (Extended Abstract)
"... This little gem is stated unbilled and proved (completely) in the last two lines of §2 of the short note Kleene (1938). In modern notation, with all the hypotheses stated explicitly and in a strong form, it reads as follows: Theorem 1 (SRT). Fix a set V ⊆ N, and suppose that for each natural number ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This little gem is stated unbilled and proved (completely) in the last two lines of §2 of the short note Kleene (1938). In modern notation, with all the hypotheses stated explicitly and in a strong form, it reads as follows: Theorem 1 (SRT). Fix a set V ⊆ N, and suppose that for each natural number n ∈ N = {0, 1, 2,...}, ϕ n: N n+1 ⇀ V is a recursive partial function of (n + 1) arguments with values in V so that the standard assumptions (1) and (2) hold with {e}(⃗x) = ϕ n e (⃗x) = ϕ n (e, ⃗x) (⃗x = (x1,..., xn) ∈ N n). (1) Every nary recursive partial function with values in V is ϕ n e for some e. (2) For all m, n, there is a recursive (total) function S = S m n: N m+1 → N such that {S(e, ⃗y)}(⃗x) = {e}(⃗y, ⃗x) (e ∈ N, ⃗y ∈ N m, ⃗x ∈ N n). Then, for every recursive, partial function f(e, ⃗y, ⃗x) of (1+m+n) arguments with values in V, there is a total recursive function ˜z(⃗y) of m arguments such that