Results 1 
4 of
4
Specification Refinement with System F
 In Proc. CSL'99, volume 1683 of LNCS
, 1999
"... . Essential concepts of algebraic specification refinement are translated into a typetheoretic setting involving System F and Reynolds' relational parametricity assertion as expressed in Plotkin and Abadi's logic for parametric polymorphism. At first order, the typetheoretic setting provides a ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
. Essential concepts of algebraic specification refinement are translated into a typetheoretic setting involving System F and Reynolds' relational parametricity assertion as expressed in Plotkin and Abadi's logic for parametric polymorphism. At first order, the typetheoretic setting provides a canonical picture of algebraic specification refinement. At higher order, the typetheoretic setting allows future generalisation of the principles of algebraic specification refinement to higher order and polymorphism. We show the equivalence of the acquired typetheoretic notion of specification refinement with that from algebraic specification. To do this, a generic algebraicspecification strategy for behavioural refinement proofs is mirrored in the typetheoretic setting. 1 Introduction This paper aims to express in type theory certain essential concepts of algebraic specification refinement. The benefit to algebraic specification is that inherently firstorder concepts are tra...
A higherorder simulation relation for System F
 Proc. 3rd Intl. Conf. on Foundations of Software Science and Computation Structures. ETAPS 2000
, 2000
"... The notion of data type specification refinement is discussed in a setting of System F and the logic for parametric polymorphism of Plotkin and Abadi. At first order, one gets a notion of specification refinement up to observational equivalence in the logic simply by using Luo's formalism. This pap ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The notion of data type specification refinement is discussed in a setting of System F and the logic for parametric polymorphism of Plotkin and Abadi. At first order, one gets a notion of specification refinement up to observational equivalence in the logic simply by using Luo's formalism. This paper generalises this notion to abstract data types whose signatures contain higherorder and polymorphic functions. At higher order, the tight connection in the logic between the existence of a simulation relation and observational equivalence ostensibly breaks down. We show that an alternative notion of simulation relation is suitable. This also gives a simulation relation in the logic that composes at higher order, thus giving a syntactic logical counterpart to recent advances on the semantic level.
Specification Refinement with System F, The HigherOrder Case
, 2000
"... . A typetheoretic counterpart to the notion of algebraic specification refinement is discussed for abstract data types with higherorder signatures. The typetheoretic setting consists of System F and the logic for parametric polymorphism of Plotkin and Abadi. For firstorder signatures, this setti ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
. A typetheoretic counterpart to the notion of algebraic specification refinement is discussed for abstract data types with higherorder signatures. The typetheoretic setting consists of System F and the logic for parametric polymorphism of Plotkin and Abadi. For firstorder signatures, this setting immediately gives a natural notion of specification refinement up to observational equivalence via the notion of simulation relation. Moreover, a proof strategy for proving observational refinements formalised by Bidoit, Hennicker and Wirsing can be soundly imported into the type theory. In lifting these results to the higherorder case, we find it necessary firstly to develop an alternative simulation relation and secondly to extend the parametric PERmodel interpretation, both in such a way as to observe data type abstraction barriers more closely. 1 Introduction One framework in algebraic specification that has particular appeal and applicability is that of stepwise specification refi...
Modular Specifications: Constructions With Finite Colimits, Diagrams, Isomorphisms
, 1996
"... : The composition of modular specifications can be modeled, in a category theoretic framework, by colimits of diagrams. Pushouts in particular describe the combination of two specifications sharing a common part. This work extends this classic idea along three lines. First, we define a term language ..."
Abstract
 Add to MetaCart
: The composition of modular specifications can be modeled, in a category theoretic framework, by colimits of diagrams. Pushouts in particular describe the combination of two specifications sharing a common part. This work extends this classic idea along three lines. First, we define a term language to represent modular specifications built with colimit constructions over a category of base specifications. This language is formally characterized by a finitely cocomplete category. Then, we propose to associate with each term a diagram. This interpretation provides us with a more abstract representation of modular specifications because irrelevant steps of the construction are eliminated. We define a category of diagrams, which is a completion of the base category with finite colimits. We prove that the interpretation of terms as diagrams defines an equivalence between the corresponding categories, which shows the correctness of this interpretation. At last, we propose an algorithm to no...