Results 1 -
4 of
4
Multiple movement representations in the human brain: an event-related fMRI study
- J. Cogn. Neurosci
, 2002
"... & Neurovascular correlates of response preparation have been investigated in human neuroimaging studies. However, conventional neuroimaging cannot distinguish, within the same trial, between areas involved in response selection and/ or response execution and areas specifically involved in respon ..."
Abstract
-
Cited by 21 (5 self)
- Add to MetaCart
(Show Context)
& Neurovascular correlates of response preparation have been investigated in human neuroimaging studies. However, conventional neuroimaging cannot distinguish, within the same trial, between areas involved in response selection and/ or response execution and areas specifically involved in response preparation. The specific contribution of parietal and frontal areas to motor preparation has been explored in electrophysiological studies in monkey. However, the asso-ciative nature of sensorimotor tasks calls for the additional contributions of other cortical regions. In this article, we have investigated the functional anatomy of movement represen-tations in the context of an associative visuomotor task with instructed delays. Neural correlates of movement representa-tions have been assessed by isolating preparatory activity that
On the programming and reprogramming of actions.
- Cerebral Cortex,
, 2007
"... Actions are often selected in the context of ongoing movement plans. Most studies of action selection have overlooked this fact, implicitly assuming that the motor system is passive prior to presentation of instructions triggering movement selection. Other studies addressed action planning in the c ..."
Abstract
-
Cited by 5 (1 self)
- Add to MetaCart
Actions are often selected in the context of ongoing movement plans. Most studies of action selection have overlooked this fact, implicitly assuming that the motor system is passive prior to presentation of instructions triggering movement selection. Other studies addressed action planning in the context of an already present motor plan, but focused mostly on inhibition of a prepotent response under fierce time pressure. Under these circumstances, inhibition of previous motor plans and selection of a new response become temporally intermingled. Here, we explore how the presence of earlier motor plans influences cerebral effects associated with action selection, separating in time movement programming, reprogramming, and execution. We show that portions of parietofrontal circuits, including intraparietal sulcus and left dorsal premotor cortex, are systematically involved in programming motor responses, their activity being indifferent to the presence of earlier motor plans. We identify additional regions recruited when a motor response is programmed in the context of an existing motor program. We found that several right-hemisphere regions, previously associated with response inhibition, might be better characterized as involved in response selection. Finally, we detail the specific role of a right precentral region in movement reprogramming that is involved in inhibiting not only actual responses but also motor representations.