Results 1 
3 of
3
Inductive Definitions and Type Theory: An Introduction
"... MartinLof's type theory can be described as an intuitionistic theory of iterated inductive definitions developed in a framework of dependent types. It was originally intended to be a fullscale system for the formalization of constructive mathematics, but has also proved to be a powerful framewo ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
MartinLof's type theory can be described as an intuitionistic theory of iterated inductive definitions developed in a framework of dependent types. It was originally intended to be a fullscale system for the formalization of constructive mathematics, but has also proved to be a powerful framework for programming. The theory integrates an expressive specification language (its type system) and a functional programming language (where all programs terminate). There now exist several proofassistants based on type theory, and many nontrivial examples from programming, computer science, logic, and mathematics have been implemented using these. In this series of lectures we shall describe type theory as a theory of inductive definitions. We emphasize its open nature: much like in a standard functional language such as ML or Haskell the user can add new types whenever there is a need for them. We discuss the syntax and semantics of the theory. Moreover, we present some examples ...
Gödel on computability
"... Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of the second theorem was explicitly based on Turing’s 1936 reduction of finite procedures to machine computations. Turing gave in his 1954 an understated analysis of finite procedures in terms of Post production systems. This analysis, prima facie quite different from that given in 1936, served as the basis for an exposition of various unsolvable problems. Turing had addressed issues of mentality and intelligence in contemporaneous essays, the best known of which is of course Computing machinery and intelligence. Gödel’s and Turing’s considerations from this period intersect through their attempt, on the one hand, to analyze finite, mechanical procedures and, on the other hand, to approach mental phenomena in a scientific way. Neuroscience or brain science was an important component of the latter for both: Gödel’s remarks in the Gibbs Lecture as well as in his later conversations with Wang and Turing’s Intelligent Machinery can serve as clear evidence for that. 2 Both men were convinced that some mental processes are not mechanical, in the sense that Turing machines cannot mimic them. For Gödel, such processes were to be found in mathematical experience and he was led to the conclusion that mind is separate from matter. Turing simply noted that for a machine or a brain it is not enough to be converted into a universal (Turing) machine in order to become intelligent: “discipline”, the characteristic
Type Theory with FirstOrder Data Types and SizeChange Termination
, 2004
"... We prove normalization for a dependently typed lambdacalculus extended with firstorder data types and computation schemata for firstorder sizechange terminating recursive functions. Sizechange termination, introduced by C.S. Lee, N.D. Jones and A.M. BenAmram, can be seen as a generalized form ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We prove normalization for a dependently typed lambdacalculus extended with firstorder data types and computation schemata for firstorder sizechange terminating recursive functions. Sizechange termination, introduced by C.S. Lee, N.D. Jones and A.M. BenAmram, can be seen as a generalized form of structural induction, which allows inductive computations and proofs to be defined in a straightforward manner. The language can be used as a proof system—an extension of MartinLöf’s Logical Framework.