Results 1  10
of
12
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 983 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Assessment and Propagation of Model Uncertainty
, 1995
"... this paper I discuss a Bayesian approach to solving this problem that has long been available in principle but is only now becoming routinely feasible, by virtue of recent computational advances, and examine its implementation in examples that involve forecasting the price of oil and estimating the ..."
Abstract

Cited by 111 (0 self)
 Add to MetaCart
this paper I discuss a Bayesian approach to solving this problem that has long been available in principle but is only now becoming routinely feasible, by virtue of recent computational advances, and examine its implementation in examples that involve forecasting the price of oil and estimating the chance of catastrophic failure of the U.S. Space Shuttle.
Bayes factors and model uncertainty
 DEPARTMENT OF STATISTICS, UNIVERSITY OFWASHINGTON
, 1993
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of Pvalues, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor ofa null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "nonstandard " statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive nonBayesian significance
Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems
 Statistical Science
"... This paper is a survey of the major techniques and approaches available for the numerical approximation of integrals in statistics. We classify these into five broad categories; namely, asymptotic methods, importance sampling, adaptive importance sampling, multiple quadrature and Markov chain method ..."
Abstract

Cited by 33 (4 self)
 Add to MetaCart
This paper is a survey of the major techniques and approaches available for the numerical approximation of integrals in statistics. We classify these into five broad categories; namely, asymptotic methods, importance sampling, adaptive importance sampling, multiple quadrature and Markov chain methods. Each method is discussed giving an outline of the basic supporting theory and particular features of the technique. Conclusions are drawn concerning the relative merits of the methods based on the discussion and their application to three examples. The following broad recommendations are made. Asymptotic methods should only be considered in contexts where the integrand has a dominant peak with approximate ellipsoidal symmetry. Importance sampling, and preferably adaptive importance sampling, based on a multivariate Student should be used instead of asymptotics methods in such a context. Multiple quadrature, and in particular subregion adaptive integration, are the algorithms of choice for...
Objective Priors for the Bivariate Normal Model with Multivariate Generalizations 1
, 2006
"... Study of the bivariate normal distribution raises the full range of issues involving objective Bayesian inference, including the different types of objective priors (e.g., Jeffreys, invariant, reference, matching), the different modes of inference (e.g., Bayesian, frequentist, fiducial), and the cri ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Study of the bivariate normal distribution raises the full range of issues involving objective Bayesian inference, including the different types of objective priors (e.g., Jeffreys, invariant, reference, matching), the different modes of inference (e.g., Bayesian, frequentist, fiducial), and the criteria involved in deciding on optimal objective priors (e.g., ease of computation, frequentist performance, marginalization paradoxes). Summary recommendations as to optimal objective priors are made for a variety of inferences involving the bivariate normal distribution. In the course of the investigation, a variety of surprising results were found, including the availability of objective priors that yield exact frequentist inferences for many functions of the bivariate normal parameters, including the correlation coefficient. Several generalizations to the multivariate normal distribution are given. Some key words: Reference priors, matching priors, Jeffreys priors, rightHaar prior, fiducial inference, frequentist coverage, marginalization paradox, rejection sampling, constructive posterior distributions. 1 This research was supported by the National Science Foundation, under grants DMS0103265 and SES
Objective Priors for the Bivariate Normal Model
 Annals of Statistics
, 2008
"... Study of the bivariate normal distribution raises the full range of issues involving objective Bayesian inference, including the different types of objective priors (e.g., Jeffreys, invariant, reference, matching), the different modes of inference (e.g., Bayesian, frequentist, fiducial) and the crit ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Study of the bivariate normal distribution raises the full range of issues involving objective Bayesian inference, including the different types of objective priors (e.g., Jeffreys, invariant, reference, matching), the different modes of inference (e.g., Bayesian, frequentist, fiducial) and the criteria involved in deciding on optimal objective priors (e.g., ease of computation, frequentist performance, marginalization paradoxes). Summary recommendations as to optimal objective priors are made for a variety of inferences involving the bivariate normal distribution. In the course of the investigation, a variety of surprising results were found, including the availability of objective priors that yield exact frequentist inferences for many functions of the bivariate normal parameters, including the correlation coefficient. 1. Introduction and
Information measures in Perspective
, 2010
"... Informationtheoretic methodologies are increasingly being used in various disciplines. Frequently an information measure is adapted for a problem, yet the perspective of information as the unifying notion is overlooked. We set forth this perspective through presenting informationtheoretic methodol ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Informationtheoretic methodologies are increasingly being used in various disciplines. Frequently an information measure is adapted for a problem, yet the perspective of information as the unifying notion is overlooked. We set forth this perspective through presenting informationtheoretic methodologies for a set of problems in probability and statistics. Our focal measures are Shannon entropy and KullbackLeibler information. The background topics for these measures include notions of uncertainty and information, their axiomatic foundation, interpretations, properties, and generalizations. Topics with broad methodological applications include discrepancy between distributions, derivation of probability models, dependence between variables, and Bayesian analysis. More specific methodological topics include model selection, limiting distributions, optimal prior distribution and design of experiment, modeling duration variables, order statistics, data disclosure, and relative importance of predictors. Illustrations range from very basic to highly technical ones that draw attention to subtle points.
Laplace Control Variates: A New Swindle
, 1995
"... INTRODUCTION The usual problem in Bayesian statistics is to try to guess the value of some vector quantity of interest g 2 R m , upon observing data X = x 2 R d under a parametric model X ¸ f(xj`), ` 2 \Theta ae R p , under the belief that ` ¸ ß(d`) and that g is related to the parameter by g ..."
Abstract
 Add to MetaCart
INTRODUCTION The usual problem in Bayesian statistics is to try to guess the value of some vector quantity of interest g 2 R m , upon observing data X = x 2 R d under a parametric model X ¸ f(xj`), ` 2 \Theta ae R p , under the belief that ` ¸ ß(d`) and that g is related to the parameter by g = g(`) for some known function g : \Theta ! R m . Formally the problem is solved by Bayes' Theorem: ¯ g j E[g(`)jX = x] = R \Theta g(`)<F30.