Results 1  10
of
167
An analysis of transformations
 Journal of the Royal Statistical Society. Series B (Methodological
, 1964
"... In the analysis of data it is often assumed that observations y,, y,,...,y, are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedasti ..."
Abstract

Cited by 1032 (3 self)
 Add to MetaCart
In the analysis of data it is often assumed that observations y,, y,,...,y, are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's. Inferences about the transformation and about the parameters of the linear model are made by computing the likelihood function and the relevant posterior distribution. The contributions of normality, homoscedasticity and additivity to the transformation are separated. The relation of the present methods to earlier procedures for finding transformations is discussed. The methods are illustrated with examples. 1.
The minimum description length principle in coding and modeling
 IEEE TRANS. INFORM. THEORY
, 1998
"... We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized ..."
Abstract

Cited by 396 (17 self)
 Add to MetaCart
(Show Context)
We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples.
Calibration and Empirical Bayes Variable Selection
 Biometrika
, 1997
"... this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were ..."
Abstract

Cited by 191 (21 self)
 Add to MetaCart
this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were also discovered independently by Donoho & Johnstone (1994) in the wavelet regression context, where they refer to it as the universal hard thresholding rule
Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models
, 1993
"... Ways of obtaining approximate Bayes factors for generalized linear models are described, based on the Laplace method for integrals. I propose a new approximation which uses only the output of standard computer programs such as GUM; this appears to be quite accurate. A reference set of proper priors ..."
Abstract

Cited by 149 (28 self)
 Add to MetaCart
Ways of obtaining approximate Bayes factors for generalized linear models are described, based on the Laplace method for integrals. I propose a new approximation which uses only the output of standard computer programs such as GUM; this appears to be quite accurate. A reference set of proper priors is suggested, both to represent the situation where there is not much prior information, and to assess the sensitivity of the results to the prior distribution. The methods can be used when the dispersion parameter is unknown, when there is overdispersion, to compare link functions, and to compare error distributions and variance functions. The methods can be used to implement the Bayesian approach to accounting for model uncertainty. I describe an application to inference about relative risks in the presence of control factors where model uncertainty is large and important. Software to implement the
Comparing Dynamic Equilibrium Models to Data: A Bayesian Approach
, 2002
"... This paper studies the properties of the Bayesian approach to estimation and comparison of dynamic equilibrium economies. Both tasks can be performed even if the models are nonnested, misspecified, and nonlinear. First, we show that Bayesian methods have a classical interpretation: asymptotically ..."
Abstract

Cited by 91 (13 self)
 Add to MetaCart
This paper studies the properties of the Bayesian approach to estimation and comparison of dynamic equilibrium economies. Both tasks can be performed even if the models are nonnested, misspecified, and nonlinear. First, we show that Bayesian methods have a classical interpretation: asymptotically, the parameter point estimates converge to their pseudotrue values, and the best model under the KullbackLeibler distance will have the highest posterior probability. Second, we illustrate the strong small sample behavior of the approach using a wellknown application: the U.S. cattle cycle. Bayesian estimates outperform maximum likelihood results, and the proposed model is easily compared with a set of BVARs.
The Horseshoe Estimator for Sparse Signals
, 2008
"... This paper proposes a new approach to sparsity called the horseshoe estimator. The horseshoe is a close cousin of other widely used Bayes rules arising from, for example, doubleexponential and Cauchy priors, in that it is a member of the same family of multivariate scale mixtures of normals. But th ..."
Abstract

Cited by 79 (15 self)
 Add to MetaCart
This paper proposes a new approach to sparsity called the horseshoe estimator. The horseshoe is a close cousin of other widely used Bayes rules arising from, for example, doubleexponential and Cauchy priors, in that it is a member of the same family of multivariate scale mixtures of normals. But the horseshoe enjoys a number of advantages over existing approaches, including its robustness, its adaptivity to different sparsity patterns, and its analytical tractability. We prove two theorems that formally characterize both the horseshoe’s adeptness at large outlying signals, and its superefficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using a combination of real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers one would get by pursuing a full Bayesian modelaveraging approach using a discrete mixture prior to model signals and noise.
Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery
"... Abstract—This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown e ..."
Abstract

Cited by 77 (37 self)
 Add to MetaCart
(Show Context)
Abstract—This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown endmember spectra is conducted in a unified manner by generating the posterior distribution of abundances and endmember parameters under a hierarchical Bayesian model. This model assumes conjugate prior distributions for these parameters, accounts for nonnegativity and fulladditivity constraints, and exploits the fact that the endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is proposed to overcome the complexity of evaluating the resulting posterior distribution. This sampler generates samples distributed according to the posterior distribution and estimates the unknown parameters using these generated samples. The accuracy of the joint Bayesian estimator is illustrated by simulations conducted on synthetic and real AVIRIS images. Index Terms—Bayesian inference, endmember extraction, hyperspectral imagery, linear spectral unmixing, MCMC methods. I.
Bayes and empiricalBayes multiplicity adjustment in the variableselection problem. The Annals of Statistics 38
, 2010
"... ar ..."
Estimating dynamic equilibrium economies: linear versus nonlinear likelihood
 Journal of Applied Econometrics
, 2005
"... This paper compares twomethods for undertaking likelihoodbased inference in dynamic equilibrium economies: a Sequential Monte Carlo filter and the Kalman filter. The Sequential Monte Carlo filter exploits the nonlinear structure of the economy and evaluates the likelihood function of the model by s ..."
Abstract

Cited by 43 (14 self)
 Add to MetaCart
This paper compares twomethods for undertaking likelihoodbased inference in dynamic equilibrium economies: a Sequential Monte Carlo filter and the Kalman filter. The Sequential Monte Carlo filter exploits the nonlinear structure of the economy and evaluates the likelihood function of the model by simulation methods. The Kalman filter estimates a linearization of the economy around the steady state. We report two main results. First, both for simulated and for real data, the Sequential Monte Carlo filter delivers a substantially better fit of the model to the data as measured by the marginal likelihood. This is true even for a nearly linear case. Second, the differences in terms of point estimates, although relatively small in absolute values, have important effects on the moments of the model. We conclude that the nonlinear filter is a superior procedure for taking models to the data.