Results 1  10
of
74
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 473 (2 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
LOQO: An interior point code for quadratic programming
, 1994
"... ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex ..."
Abstract

Cited by 156 (9 self)
 Add to MetaCart
ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex and general nonlinear programming, since a detailed paper describing these extensions were published recently elsewhere. In particular, we emphasize the importance of establishing and maintaining symmetric quasidefiniteness of the reduced KKT system. We show that the industry standard MPS format can be nicely formulated in such a way to provide quasidefiniteness. Computational results are included for a variety of linear and quadratic programming problems. 1.
Interior Methods for Constrained Optimization
 Acta Numerica
, 1992
"... Interior methods for optimization were widely used in the 1960s, primarily in the form of barrier methods. However, they were not seriously applied to linear programming because of the dominance of the simplex method. Barrier methods fell from favour during the 1970s for a variety of reasons, includ ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
Interior methods for optimization were widely used in the 1960s, primarily in the form of barrier methods. However, they were not seriously applied to linear programming because of the dominance of the simplex method. Barrier methods fell from favour during the 1970s for a variety of reasons, including their apparent inefficiency compared with the best available alternatives. In 1984, Karmarkar's announcement of a fast polynomialtime interior method for linear programming caused tremendous excitement in the field of optimization. A formal connection can be shown between his method and classical barrier methods, which have consequently undergone a renaissance in interest and popularity. Most papers published since 1984 have concentrated on issues of computational complexity in interior methods for linear programming. During the same period, implementations of interior methods have displayed great efficiency in solving many large linear programs of everincreasing size. Interior methods...
Semidefinite Programming Relaxations For The Quadratic Assignment Problem
, 1998
"... Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP re ..."
Abstract

Cited by 72 (25 self)
 Add to MetaCart
Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualification always fails for the primal problem. Although there is no duality gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the geometrical structure of the relaxation, we are able to find projected SDP relaxations. These new relaxations, and their duals, satisfy the Slater constraint qualification, and so can be solved numerically using primaldual interiorpoint methods. For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systems which arise when finding the Newton direction. The preconditioner is found by exploiting th...
Implementation of Interior Point Methods for Large Scale Linear Programming
 in Interior Point Methods in Mathematical Programming
, 1996
"... In the past 10 years the interior point methods (IPM) for linear programming have gained extraordinary interest as an alternative to the sparse simplex based methods. This has initiated a fruitful competition between the two types of algorithms which has lead to very efficient implementations on bot ..."
Abstract

Cited by 70 (22 self)
 Add to MetaCart
In the past 10 years the interior point methods (IPM) for linear programming have gained extraordinary interest as an alternative to the sparse simplex based methods. This has initiated a fruitful competition between the two types of algorithms which has lead to very efficient implementations on both sides. The significant difference between interior point and simplex based methods is reflected not only in the theoretical background but also in the practical implementation. In this paper we give an overview of the most important characteristics of advanced implementations of interior point methods. First, we present the infeasibleprimaldual algorithm which is widely considered the most efficient general purpose IPM. Our discussion includes various algorithmic enhancements of the basic algorithm. The only shortcoming of the "traditional" infeasibleprimaldual algorithm is to detect a possible primal or dual infeasibility of the linear program. We discuss how this problem can be solve...
Solving LargeScale Linear Programs by InteriorPoint Methods Under the MATLAB Environment
 Optimization Methods and Software
, 1996
"... In this paper, we describe our implementation of a primaldual infeasibleinteriorpoint algorithm for largescale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL  Linearprogramming InteriorPoint SOLvers. LIPSOL is designed to take the advantages of M ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
In this paper, we describe our implementation of a primaldual infeasibleinteriorpoint algorithm for largescale linear programming under the MATLAB 1 environment. The resulting software is called LIPSOL  Linearprogramming InteriorPoint SOLvers. LIPSOL is designed to take the advantages of MATLAB's sparsematrix functions and external interface facilities, and of existing Fortran sparse Cholesky codes. Under the MATLAB environment, LIPSOL inherits a high degree of simplicity and versatility in comparison to its counterparts in Fortran or C language. More importantly, our extensive computational results demonstrate that LIPSOL also attains an impressive performance comparable with that of efficient Fortran or C codes in solving largescale problems. In addition, we discuss in detail a technique for overcoming numerical instability in Cholesky factorization at the endstage of iterations in interiorpoint algorithms. Keywords: Linear programming, PrimalDual infeasibleinteriorp...
A simplified homogeneous and selfdual linear programming algorithm and its implementation
 Annals of Operations Research
, 1996
"... 1 Introduction Consider the linear programming (LP) problem in the standard form: (LP) minimize cT x ..."
Abstract

Cited by 56 (5 self)
 Add to MetaCart
1 Introduction Consider the linear programming (LP) problem in the standard form: (LP) minimize cT x
Multiple Centrality Corrections in a PrimalDual Method for Linear Programming
 COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
, 1995
"... A modification of the (infeasible) primaldual interior point method is developed. The method uses multiple corrections to improve the centrality of the current iterate. The maximum number of corrections the algorithm is encouraged to make depends on the ratio of the efforts to solve and to factoriz ..."
Abstract

Cited by 48 (11 self)
 Add to MetaCart
A modification of the (infeasible) primaldual interior point method is developed. The method uses multiple corrections to improve the centrality of the current iterate. The maximum number of corrections the algorithm is encouraged to make depends on the ratio of the efforts to solve and to factorize the KKT systems. For any LP problem, this ratio is determined right after preprocessing the KKT system and prior to the optimization process. The harder the factorization, the more advantageous the higherorder corrections might prove to be. The computational performance of the method is studied on more difficult Netlib problems as well as on tougher and larger reallife LP models arising from applications. The use of multiple centrality corrections gives on the average a 25% to 40% reduction in the number of iterations compared with the widely used secondorder predictorcorrector method. This translates into 20% to 30% savings in CPU time.
Algorithms For Complementarity Problems And Generalized Equations
, 1995
"... Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult pr ..."
Abstract

Cited by 41 (5 self)
 Add to MetaCart
Recent improvements in the capabilities of complementarity solvers have led to an increased interest in using the complementarity problem framework to address practical problems arising in mathematical programming, economics, engineering, and the sciences. As a result, increasingly more difficult problems are being proposed that exceed the capabilities of even the best algorithms currently available. There is, therefore, an immediate need to improve the capabilities of complementarity solvers. This thesis addresses this need in two significant ways. First, the thesis proposes and develops a proximal perturbation strategy that enhances the robustness of Newtonbased complementarity solvers. This strategy enables algorithms to reliably find solutions even for problems whose natural merit functions have strict local minima that are not solutions. Based upon this strategy, three new algorithms are proposed for solving nonlinear mixed complementarity problems that represent a significant improvement in robustness over previous algorithms. These algorithms have local Qquadratic convergence behavior, yet depend only on a pseudomonotonicity assumption to achieve global convergence from arbitrary starting points. Using the MCPLIB and GAMSLIB test libraries, we perform extensive computational tests that demonstrate the effectiveness of these algorithms on realistic problems. Second, the thesis extends some previously existing algorithms to solve more general problem classes. Specifically, the NE/SQP method of Pang & Gabriel (1993), the semismooth equations approach of De Luca, Facchinei & Kanz...
A QMRbased interiorpoint algorithm for solving linear programs
 Math. Programming
, 1994
"... A new approach for the implementation of interiorpoint methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2\Theta2block systems of linear equations that arise within the interiorpoint algorithm. These linear systems ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
A new approach for the implementation of interiorpoint methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2\Theta2block systems of linear equations that arise within the interiorpoint algorithm. These linear systems are solved by a symmetric variant of the quasiminimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3 \Theta 3block systems to symmetric 2 \Theta 2block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interiorpoint algorithm is proposed. Some indefini...