Results 1 
3 of
3
When Do Datatypes Commute?
 Category Theory and Computer Science, 7th International Conference, volume 1290 of LNCS
, 1997
"... Polytypic programs are programs that are parameterised by type constructors (like List), unlike polymorphic programs which are parameterised by types (like Int). In this paper we formulate precisely the polytypic programming problem of "commuting " two datatypes. The precise formulation involves ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
Polytypic programs are programs that are parameterised by type constructors (like List), unlike polymorphic programs which are parameterised by types (like Int). In this paper we formulate precisely the polytypic programming problem of "commuting " two datatypes. The precise formulation involves a novel notion of higher order polymorphism. We demonstrate via a number of examples the relevance and interest of the problem, and we show that all "regular datatypes" (the sort of datatypes that one can define in a functional programming language) do indeed commute according to our specification. The framework we use is the theory of allegories, a combination of category theory with the pointfree relation calculus. 1 Polytypism The ability to abstract is vital to success in computer programming. At the macro level of requirements engineering the successful designer is the one able to abstract from the particular wishes of a few clients a general purpose product that can capture a l...
Container Types Categorically
, 2000
"... A program derivation is said to be polytypic if some of its parameters are data types. Often these data types are container types, whose elements store data. Polytypic program derivations necessitate a general, noninductive definition of `container (data) type'. Here we propose such a definition: a ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
A program derivation is said to be polytypic if some of its parameters are data types. Often these data types are container types, whose elements store data. Polytypic program derivations necessitate a general, noninductive definition of `container (data) type'. Here we propose such a definition: a container type is a relator that has membership. It is shown how this definition implies various other properties that are shared by all container types. In particular, all container types have a unique strength, and all natural transformations between container types are strong. Capsule Review Progress in a scientific dicipline is readily equated with an increase in the volume of knowledge, but the true milestones are formed by the introduction of solid, precise and usable definitions. Here you will find the first generic (`polytypic') definition of the notion of `container type', a definition that is remarkably simple and suitable for formal generic proofs (as is amply illustrated in t...
What is a Data Type?
, 1996
"... A program derivation is said to be polytypic if some of its parameters are data types. Polytypic program derivations necessitate a general, noninductive definition of `data type'. Here we propose such a definition: a data type is a relator that has membership. It is shown how this definition implie ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
A program derivation is said to be polytypic if some of its parameters are data types. Polytypic program derivations necessitate a general, noninductive definition of `data type'. Here we propose such a definition: a data type is a relator that has membership. It is shown how this definition implies various other properties that are shared by all data types. In particular, all data types have a unique strength, and all natural transformations between data types are strong. 1 Introduction What is a data type? It is easy to list a number of examples: pairs, lists, bags, finite sets, possibly infinite sets, function spaces . . . but such a list of examples hardly makes a definition. The obvious formalisation is a definition that builds up the class of data types inductively; such an inductive definition, however, leads to cumbersome proofs if we want to prove a property of all data types. Here we aim to give a noninductive characterisation, defining a data type as a mathematical object...