Results 21  30
of
2,054
Fisher Discriminant Analysis With Kernels
, 1999
"... A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision functi ..."
Abstract

Cited by 312 (15 self)
 Add to MetaCart
A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision function in input space. Large scale simulations demonstrate the competitiveness of our approach.
PCA versus LDA
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In the context of the appearancebased paradigm for object recognition, it is generally believed that algorithms based on LDA (Linear Discriminant Analysis) are superior to those based on PCA (Principal Components Analysis) . In this communication we show that this is not always the case. We present ..."
Abstract

Cited by 287 (16 self)
 Add to MetaCart
In the context of the appearancebased paradigm for object recognition, it is generally believed that algorithms based on LDA (Linear Discriminant Analysis) are superior to those based on PCA (Principal Components Analysis) . In this communication we show that this is not always the case. We present our case first by using intuitively plausible arguments and then by showing actual results on a face database. Our overall conclusion is that when the training dataset is small, PCA can outperform LDA, and also that PCA is less sensitive to different training datasets. Keywords: face recognition, pattern recognition, principal components analysis, linear discriminant analysis, learning from undersampled distributions, small training datasets. 1
Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces
, 1993
"... We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are highdim ..."
Abstract

Cited by 269 (4 self)
 Add to MetaCart
We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are highdimensional Euclidian settings in which the distribution of data is in some sense of lower dimension and embedded in the space. The vptree (vantage point tree) is introduced in several forms, together with associated algorithms, as an improved method for these difficult search problems. Tree construction executes in O(n log(n)) time, and search is under certain circumstances and in the limit, O(log(n)) expected time. The theoretical basis for this approach is developed and the results of several experiments are reported. In Euclidian cases, kdtree performance is compared.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Scaling Clustering Algorithms to Large Databases”, Microsoft Research Report
, 1998
"... Practical clustering algorithms require multiple data scans to achieve convergence. For large databases, these scans become prohibitively expensive. We present a scalable clustering framework applicable to a wide class of iterative clustering. We require at most one scan of the database. In this wor ..."
Abstract

Cited by 244 (5 self)
 Add to MetaCart
Practical clustering algorithms require multiple data scans to achieve convergence. For large databases, these scans become prohibitively expensive. We present a scalable clustering framework applicable to a wide class of iterative clustering. We require at most one scan of the database. In this work, the framework is instantiated and numerically justified with the popular KMeans clustering algorithm. The method is based on identifying regions of the data that are compressible, regions that must be maintained in memory, and regions that are discardable. The algorithm operates within the confines of a limited memory buffer. Empirical results demonstrate that the scalable scheme outperforms a samplingbased approach. In our scheme, data resolution is preserved to the extent possible based upon the size of the allocated memory buffer and the fit of current clustering model to the data. The framework is naturally extended to update multiple clustering models simultaneously. We empirically evaluate on synthetic and publicly available data sets.
Refining Initial Points for KMeans Clustering
, 1998
"... Practical approaches to clustering use an iterative procedure (e.g. KMeans, EM) which converges to one of numerous local minima. It is known that these iterative techniques are especially sensitive to initial starting conditions. We present a procedure for computing a refined starting condition fro ..."
Abstract

Cited by 232 (5 self)
 Add to MetaCart
Practical approaches to clustering use an iterative procedure (e.g. KMeans, EM) which converges to one of numerous local minima. It is known that these iterative techniques are especially sensitive to initial starting conditions. We present a procedure for computing a refined starting condition from a given initial one that is based on an efficient technique for estimating the modes of a distribution. The refined initial starting condition allows the iterative algorithm to converge to a "better" local minimum. The procedure is applicable to a wide class of clustering algorithms for both discrete and continuous data. We demonstrate the application of this method to the popular KMeans clustering algorithm and show that refined initial starting points indeed lead to improved solutions. Refinement run time is considerably lower than the time required to cluster the full database. The method is scalable and can be coupled with a scalable clustering algorithm to address the largescale cl...
Computer Vision Face Tracking For Use in a Perceptual User Interface
, 1998
"... As a first step towards a perceptual user interface, a computer vision color tracking algorithm is developed and applied towards tracking human faces. Computer vision algorithms that are intended to form part of a perceptual user interface must be fast and efficient. They must be able to track in re ..."
Abstract

Cited by 221 (4 self)
 Add to MetaCart
As a first step towards a perceptual user interface, a computer vision color tracking algorithm is developed and applied towards tracking human faces. Computer vision algorithms that are intended to form part of a perceptual user interface must be fast and efficient. They must be able to track in real time yet not absorb a major share of computational resources: other tasks must be able to run while the visual interface is being used. The new algorithm developed here is based on a robust nonparametric technique for climbing density gradients to find the mode (peak) of probability distributions called the mean shift algorithm. In our case, we want to find the mode of a color distribution within a video scene. Therefore, the mean shift algorithm is modified to deal with dynamically changing color probability distributions derived from video frame sequences. The modified algorithm is called the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm. CAMSHIFT’s tracking accuracy is compared against a Polhemus tracker. Tolerance to noise, distractors and performance is studied. CAMSHIFT is then used as a computer interface for controlling commercial computer games and for exploring immersive 3D graphic worlds.
Generalized Discriminant Analysis Using a Kernel Approach
, 2000
"... We present a new method that we call Generalized Discriminant Analysis (GDA) to deal with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the Support Vector Machines (SVM) insofar as the GDA method provides a mapping of the input vectors into high di ..."
Abstract

Cited by 216 (2 self)
 Add to MetaCart
We present a new method that we call Generalized Discriminant Analysis (GDA) to deal with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the Support Vector Machines (SVM) insofar as the GDA method provides a mapping of the input vectors into high dimensional feature space. In the transformed space, linear properties make it easy to extend and generalize the classical Linear Discriminant Analysis (LDA) to non linear discriminant analysis. The formulation is expressed as an eigenvalue problem resolution. Using a different kernel, one can cover a wide class of nonlinearities. For both simulated data and alternate kernels, we give classification results as well as the shape of the separating function. The results are confirmed using a real data to perform seed classification. 1. Introduction Linear discriminant analysis (LDA) is a traditional statistical method which has proven successful on classification problems [Fukunaga, 1990]. The p...
Recognition without Correspondence using Multidimensional Receptive Field Histograms
 International Journal of Computer Vision
, 2000
"... . The appearance of an object is composed of local structure. This local structure can be described and characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters. This article presents a technique where appearances of objects are represente ..."
Abstract

Cited by 207 (19 self)
 Add to MetaCart
. The appearance of an object is composed of local structure. This local structure can be described and characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters. This article presents a technique where appearances of objects are represented by the joint statistics of such local neighborhood operators. As such, this represents a new class of appearance based techniques for computer vision. Based on joint statistics, the paper develops techniques for the identification of multiple objects at arbitrary positions and orientations in a cluttered scene. Experiments show that these techniques can identify over 100 objects in the presence of major occlusions. Most remarkably, the techniques have low complexity and therefore run in realtime. 1. Introduction The paper proposes a framework for the statistical representation of the appearance of arbitrary 3D objects. This representation consists of a probability density function or jo...
An Efficient kMeans Clustering Algorithm: Analysis and Implementation
, 2000
"... Kmeans clustering is a very popular clustering technique, which is used in numerous applications. Given a set of n data points in R d and an integer k, the problem is to determine a set of k points R d , called centers, so as to minimize the mean squared distance from each data point to its ..."
Abstract

Cited by 207 (3 self)
 Add to MetaCart
Kmeans clustering is a very popular clustering technique, which is used in numerous applications. Given a set of n data points in R d and an integer k, the problem is to determine a set of k points R d , called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for kmeans clustering is Lloyd's algorithm. In this paper we present a simple and efficient implementation of Lloyd's kmeans clustering algorithm, which we call the filtering algorithm. This algorithm is very easy to implement. It differs from most other approaches in that it precomputes a kdtree data structure for the data points rather than the center points. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a datasensitive analysis of the algorithm's running time. Second, we have implemented the algorithm and performed a number of empirical studies, both on synthetically generated data and on real...