Results 1 
1 of
1
A finite axiomatization of inductiverecursive definitions
 Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science
, 1999
"... Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an in ..."
Abstract

Cited by 42 (14 self)
 Add to MetaCart
Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an inductively defined set substantially and allows us to introduce universes and higher order universes (but not a Mahlo universe). In this article we give a finite axiomatization of inductiverecursive definitions. We prove consistency by constructing a settheoretic model which makes use of one Mahlo cardinal. 1