Results 1  10
of
58
Independent Component Analysis
 Neural Computing Surveys
, 2001
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 1492 (93 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes the statistical dependence of the components of the representation. Such a representation seems to capture the essential structure of the data in many applications. In this paper, we survey the existing theory and methods for ICA. 1
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual i ..."
Abstract

Cited by 390 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mutual independence between the signals. The weakness of the assumptions makes it a powerful approach but requires to venture beyond familiar second order statistics. The objective of this paper is to review some of the approaches that have been recently developed to address this exciting problem, to show how they stem from basic principles and how they relate to each other.
Independent Factor Analysis
 Neural Computation
, 1999
"... We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square no ..."
Abstract

Cited by 219 (9 self)
 Add to MetaCart
We introduce the independent factor analysis (IFA) method for recovering independent hidden sources from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal component analysis (PCA), and independent component analysis (ICA), and can handle not only square noiseless mixing, but also the general case where the number of mixtures differs from the number of sources and the data are noisy. IFA is a twostep procedure. In the first step, the source densities, mixing matrix and noise covariance are estimated from the observed data by maximum likelihood. For this purpose we present an expectationmaximization (EM) algorithm, which performs unsupervised learning of an associated probabilistic model of the mixing situation. Each source in our model is described by a mixture of Gaussians, thus all the probabilistic calculations can be performed analytically. In the second step, the sources are reconstructed from the observed data by an optimal nonlinear ...
HighOrder Contrasts for Independent Component Analysis
"... This article considers highorder measures of independence for the independent component analysis problem and discusses the class of Jacobi algorithms for their optimization. Several implementations are discussed. We compare the proposed approaches with gradientbased techniques from the algorithmic ..."
Abstract

Cited by 187 (4 self)
 Add to MetaCart
This article considers highorder measures of independence for the independent component analysis problem and discusses the class of Jacobi algorithms for their optimization. Several implementations are discussed. We compare the proposed approaches with gradientbased techniques from the algorithmic point of view and also on a set of biomedical data.
Ensemble learning for independent component analysis
 in Advances in Independent Component Analysis
, 2000
"... i Abstract This thesis is concerned with the problem of Blind Source Separation. Specifically we considerthe Independent Component Analysis (ICA) model in which a set of observations are modelled by xt = Ast: (1) where A is an unknown mixing matrix and st is a vector of hidden source components atti ..."
Abstract

Cited by 49 (2 self)
 Add to MetaCart
i Abstract This thesis is concerned with the problem of Blind Source Separation. Specifically we considerthe Independent Component Analysis (ICA) model in which a set of observations are modelled by xt = Ast: (1) where A is an unknown mixing matrix and st is a vector of hidden source components attime t. The ICA problem is to find the sources given only a set of observations. In chapter 1, the blind source separation problem is introduced. In chapter 2 the methodof Ensemble Learning is explained. Chapter 3 applies Ensemble Learning to the ICA model and chapter 4 assesses the use of Ensemble Learning for model selection.Chapters 57 apply the Ensemble Learning ICA algorithm to data sets from physics (a medical imaging data set consisting of images of a tooth), biology (data sets from cDNAmicroarrays) and astrophysics (Planck image separation and galaxy spectra separation).
Blind Source Separation and Deconvolution: The Dynamic Component Analysis Algorithm
 Neural Computation
, 1998
"... We derive a novel family of unsupervised learning algorithms for blind separation of mixed and convolved sources. Our approach is based on formulating the separation problem as a learning task of a spatiotemporal generative model, whose parameters are adapted iteratively to minimize suitable error ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
We derive a novel family of unsupervised learning algorithms for blind separation of mixed and convolved sources. Our approach is based on formulating the separation problem as a learning task of a spatiotemporal generative model, whose parameters are adapted iteratively to minimize suitable error functions, thus ensuring stability of the algorithms. The resulting learning rules achieve separation by exploiting highorder spatiotemporal statistics of the mixture data. Different rules are obtained by learning generative models in the frequency and time domains, whereas a hybrid frequency/time model leads to the best performance. These algorithms generalize independent component analysis to the case of convolutive mixtures and exhibit superior performance on instantaneous mixtures. An extension of the relativegradient concept to the spatiotemporal case leads to fast and efficient learning rules with equivariant properties. Our approach can incorporate information about the mixing sit...
Does independent component analysis play a role in unmixing hyperspectral data
 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
, 2005
"... Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2) ..."
Abstract

Cited by 37 (10 self)
 Add to MetaCart
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2) sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signaltonoise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Bayesian Source Separation and Localization
 SPIE’98 Proceedings: Bayesian Inference for Inverse Problems
, 1998
"... The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem c ..."
Abstract

Cited by 34 (8 self)
 Add to MetaCart
The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem consists of using the sound recorded by the detectors to separate the signals and recover the original source waveforms. In general, the inverse problem is unsolvable without additional information.
Audio source separation of convolutive mixtures
 IEEE Trans. Speech Audio Process
, 2003
"... Abstract — The problem of separation of audio sources recorded in a real world situation is well established in modern literature. A method to solve this problem is Blind Source Separation (BSS) using Independent Component Analysis (ICA). The recording environment is usually modelled as convolutive. ..."
Abstract

Cited by 31 (5 self)
 Add to MetaCart
Abstract — The problem of separation of audio sources recorded in a real world situation is well established in modern literature. A method to solve this problem is Blind Source Separation (BSS) using Independent Component Analysis (ICA). The recording environment is usually modelled as convolutive. Previous research on ICA of instantaneous mixtures provided solid background for the separation of convolved mixtures. The authors revise current approaches on the subject and propose a fast frequency domain ICA framework, providing a solution for the apparent permutation problem encountered in these methods.