Results 11  20
of
1,653
Diffusion kernels on graphs and other discrete input spaces
 in: Proceedings of the 19th International Conference on Machine Learning
, 2002
"... The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation ..."
Abstract

Cited by 187 (7 self)
 Add to MetaCart
The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation idea. In particular, we focus on generating kernels on graphs, for which we propose a special class of exponential kernels called diffusion kernels, which are based on the heat equation and can be regarded as the discretization of the familiar Gaussian kernel of Euclidean space.
Sparse Greedy Matrix Approximation for Machine Learning
, 2000
"... In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the ..."
Abstract

Cited by 179 (11 self)
 Add to MetaCart
In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the design matrix. Experimental results are given and connections to KernelPCA, Sparse Kernel Feature Analysis, and Matching Pursuit are pointed out. 1. Introduction Many recent advances in machine learning such as Support Vector Machines [Vapnik, 1995], Regularization Networks [Girosi et al., 1995], or Gaussian Processes [Williams, 1998] are based on kernel methods. Given an msample f(x 1 ; y 1 ); : : : ; (x m ; y m )g of patterns x i 2 X and target values y i 2 Y these algorithms minimize the regularized risk functional min f2H R reg [f ] = 1 m m X i=1 c(x i ; y i ; f(x i )) + 2 kfk 2 H : (1) Here H denotes a reproducing kernel Hilbert space (RKHS) [Aronszajn, 1950],...
Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data
 Journal of the American Statistical Association
, 2004
"... Twocategory support vector machines (SVM) have been very popular in the machine learning community for classi � cation problems. Solving multicategory problems by a series of binary classi � ers is quite common in the SVM paradigm; however, this approach may fail under various circumstances. We pro ..."
Abstract

Cited by 175 (17 self)
 Add to MetaCart
Twocategory support vector machines (SVM) have been very popular in the machine learning community for classi � cation problems. Solving multicategory problems by a series of binary classi � ers is quite common in the SVM paradigm; however, this approach may fail under various circumstances. We propose the multicategory support vector machine (MSVM), which extends the binary SVM to the multicategory case and has good theoretical properties. The proposed method provides a unifying framework when there are either equal or unequal misclassi � cation costs. As a tuning criterion for the MSVM, an approximate leaveoneout crossvalidation function, called Generalized Approximate Cross Validation, is derived, analogous to the binary case. The effectiveness of the MSVM is demonstrated through the applications to cancer classi � cation using microarray data and cloud classi � cation with satellite radiance pro � les.
Consistency of the group lasso and multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it ..."
Abstract

Cited by 162 (28 self)
 Add to MetaCart
We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency of group Lasso under practical assumptions, such as model misspecification. When the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert norms, the problem is usually referred to as multiple kernel learning and is commonly used for learning from heterogeneous data sources and for non linear variable selection. Using tools from functional analysis, and in particular covariance operators, we extend the consistency results to this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.
Learning Multiple Tasks with Kernel Methods
 Journal of Machine Learning Research
, 2005
"... Editor: John ShaweTaylor We study the problem of learning many related tasks simultaneously using kernel methods and regularization. The standard singletask kernel methods, such as support vector machines and regularization networks, are extended to the case of multitask learning. Our analysis sh ..."
Abstract

Cited by 156 (10 self)
 Add to MetaCart
Editor: John ShaweTaylor We study the problem of learning many related tasks simultaneously using kernel methods and regularization. The standard singletask kernel methods, such as support vector machines and regularization networks, are extended to the case of multitask learning. Our analysis shows that the problem of estimating many task functions with regularization can be cast as a single task learning problem if a family of multitask kernel functions we define is used. These kernels model relations among the tasks and are derived from a novel form of regularizers. Specific kernels that can be used for multitask learning are provided and experimentally tested on two real data sets. In agreement with past empirical work on multitask learning, the experiments show that learning multiple related tasks simultaneously using the proposed approach can significantly outperform standard singletask learning particularly when there are many related tasks but few data per task.
Optimal aggregation of classifiers in statistical learning
 Ann. Statist
, 2004
"... Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of cand ..."
Abstract

Cited by 153 (5 self)
 Add to MetaCart
Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of candidate sets and the margin parameter. The dependence is explicitly given, indicating that optimal fast rates approaching O(n−1) can be attained, where n is the sample size, and that the proposed classifiers have the property of robustness to the margin. The main result of the paper concerns optimal aggregation of classifiers: we suggest a classifier that automatically adapts both to the complexity and to the margin, and attains the optimal fast rates, up to a logarithmic factor. 1. Introduction. Let (Xi,Yi)
Marginalized kernels between labeled graphs
 Proceedings of the Twentieth International Conference on Machine Learning
, 2003
"... A new kernel function between two labeled graphs is presented. Feature vectors are defined as the counts of label paths produced by random walks on graphs. The kernel computation finally boils down to obtaining the stationary state of a discretetime linear system, thus is efficiently performed by s ..."
Abstract

Cited by 144 (14 self)
 Add to MetaCart
A new kernel function between two labeled graphs is presented. Feature vectors are defined as the counts of label paths produced by random walks on graphs. The kernel computation finally boils down to obtaining the stationary state of a discretetime linear system, thus is efficiently performed by solving simultaneous linear equations. Our kernel is based on an infinite dimensional feature space, so it is fundamentally different from other string or tree kernels based on dynamic programming. We will present promising empirical results in classification of chemical compounds. 1 1.
Human detection using oriented histograms of flow and appearance
 In ECCV
, 2006
"... Abstract. Detecting humans in films and videos is a challenging problem owing to the motion of the subjects, the camera and the background and to variations in pose, appearance, clothing, illumination and background clutter. We develop a detector for standing and moving people in videos with possibl ..."
Abstract

Cited by 141 (4 self)
 Add to MetaCart
Abstract. Detecting humans in films and videos is a challenging problem owing to the motion of the subjects, the camera and the background and to variations in pose, appearance, clothing, illumination and background clutter. We develop a detector for standing and moving people in videos with possibly moving cameras and backgrounds, testing several different motion coding schemes and showing empirically that orientated histograms of differential optical flow give the best overall performance. These motionbased descriptors are combined with our Histogram of Oriented Gradient appearance descriptors. The resulting detector is tested on several databases including a challenging test set taken from feature films and containing wide ranges of pose, motion and background variations, including moving cameras and backgrounds. We validate our results on two challenging test sets containing more than 4400 human examples. The combined detector reduces the false alarm rate by a factor of 10 relative to the best appearancebased detector, for example giving false alarm rates of 1 per 20,000 windows tested at 8 % miss rate on our Test Set 1. 1
Probabilistic nonlinear principal component analysis with Gaussian process latent variable models
 Journal of Machine Learning Research
, 2005
"... Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component ..."
Abstract

Cited by 134 (14 self)
 Add to MetaCart
Summarising a high dimensional data set with a low dimensional embedding is a standard approach for exploring its structure. In this paper we provide an overview of some existing techniques for discovering such embeddings. We then introduce a novel probabilistic interpretation of principal component analysis (PCA) that we term dual probabilistic PCA (DPPCA). The DPPCA model has the additional advantage that the linear mappings from the embedded space can easily be nonlinearised through Gaussian processes. We refer to this model as a Gaussian process latent variable model (GPLVM). Through analysis of the GPLVM objective function, we relate the model to popular spectral techniques such as kernel PCA and multidimensional scaling. We then review a practical algorithm for GPLVMs in the context of large data sets and develop it to also handle discrete valued data and missing attributes. We demonstrate the model on a range of realworld and artificially generated data sets.