Results 11  20
of
113
Secure multiparty computation of approximations
, 2001
"... Approximation algorithms can sometimes provide efficient solutions when no efficient exact computation is known. In particular, approximations are often useful in a distributed setting where the inputs are held by different parties and may be extremely large. Furthermore, for some applications, the ..."
Abstract

Cited by 99 (24 self)
 Add to MetaCart
Approximation algorithms can sometimes provide efficient solutions when no efficient exact computation is known. In particular, approximations are often useful in a distributed setting where the inputs are held by different parties and may be extremely large. Furthermore, for some applications, the parties want to compute a function of their inputs securely, without revealing more information than necessary. In this work we study the question of simultaneously addressing the above efficiency and security concerns via what we call secure approximations. We start by extending standard definitions of secure (exact) computation to the setting of secure approximations. Our definitions guarantee that no additional information is revealed by the approximation beyond what follows from the output of the function being approximated. We then study the complexity of specific secure approximation problems. In particular, we obtain a sublinearcommunication protocol for securely approximating the Hamming distance and a polynomialtime protocol for securely approximating the permanent and related #Phard problems. 1
Improved approximation algorithms for large matrices via random projections
 in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
"... Recently several results appeared that show significant reduction in time for matrix multiplication, singular value decomposition as well as linear (ℓ2) regression, all based on data dependent random sampling. Our key idea is that low dimensional embeddings can be used to eliminate data dependence a ..."
Abstract

Cited by 93 (3 self)
 Add to MetaCart
Recently several results appeared that show significant reduction in time for matrix multiplication, singular value decomposition as well as linear (ℓ2) regression, all based on data dependent random sampling. Our key idea is that low dimensional embeddings can be used to eliminate data dependence and provide more versatile, linear time pass efficient matrix computation. Our main contribution is summarized as follows. • Independent of the recent results of HarPeled and of Deshpande and Vempala, one of the first – and to the best of our knowledge the most efficient – relativeerror (1 + ɛ) ‖A − Ak‖F approximation algorithms for the singular value decomposition of an m × n matrix A with M nonzero entries that requires 2 passes over the data and runs in time O M k + (n + m)k2 ɛ ɛ2) log 1 δ • The first o(nd 2) time (1+ɛ) relativeerror approximation algorithm for n×d linear (ℓ2) regression. • A matrix multiplication algorithm that easily applies to implicitly given matrices. 1
Maintaining Variance and kMedians over Data Stream Windows
 In PODS
, 2003
"... The sliding window model is useful for discounting stale data in data stream applications. In this model, data elements arrive continually and only the most recent N elements are used when answering queries. We present a novel technique for solving two important and related problems in the sliding w ..."
Abstract

Cited by 74 (1 self)
 Add to MetaCart
The sliding window model is useful for discounting stale data in data stream applications. In this model, data elements arrive continually and only the most recent N elements are used when answering queries. We present a novel technique for solving two important and related problems in the sliding window model  maintaining variance and maintaining a k median clustering. Our solution to the problem of maintaining variance provides a continually updated estimate of the variance of the last N values in a data stream with relative error of at most # using O( # 2 log N) memory. We present a constantfactor approximation algorithm which maintains an approximate kmedian solution for the last N data points using O( N) memory, where # < 1/2 is a parameter which trades o# the space bound with the approximation factor of O(2 ).
StreamingData Algorithms for HighQuality Clustering
, 2001
"... As data gathering grows easier, and as researchers discover new ways to interpret data, streamingdata algorithms have become essential in many fields. Data stream computation precludes algorithms that require random access or large memory. In this paper, we consider the problem of clustering data s ..."
Abstract

Cited by 74 (1 self)
 Add to MetaCart
As data gathering grows easier, and as researchers discover new ways to interpret data, streamingdata algorithms have become essential in many fields. Data stream computation precludes algorithms that require random access or large memory. In this paper, we consider the problem of clustering data streams, which is important in the analysis a variety of sources of data streams, such as routing data, telephone records, web documents, and clickstreams. We provide a new clustering algorithms with theoretical guarantees on its performance. We give empirical evidence of its superiority over the commonlyused kMeans algorithm. We then adapt our algorithm to be able to operate on data streams and experimentally demonstrate its superior performance in this context.
Faster CoreSet Constructions and Data Stream Algorithms in Fixed Dimensions
 Comput. Geom. Theory Appl
, 2003
"... We speed up previous (1 + ")factor approximation algorithms for a number of geometric optimization problems in xed dimensions: diameter, width, minimumradius enclosing cylinder, minimumwidth annulus, minimumvolume bounding box, minimumwidth cylindrical shell, etc. ..."
Abstract

Cited by 65 (3 self)
 Add to MetaCart
We speed up previous (1 + ")factor approximation algorithms for a number of geometric optimization problems in xed dimensions: diameter, width, minimumradius enclosing cylinder, minimumwidth annulus, minimumvolume bounding box, minimumwidth cylindrical shell, etc.
Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication
 SIAM Journal on Computing
, 2004
"... ..."
On graph problems in a semistreaming model
 In 31st International Colloquium on Automata, Languages and Programming
, 2004
"... Abstract. We formalize a potentially rich new streaming model, the semistreaming model, that we believe is necessary for the fruitful study of efficient algorithms for solving problems on massive graphs whose edge sets cannot be stored in memory. In this model, the input graph, G = (V, E), is prese ..."
Abstract

Cited by 61 (11 self)
 Add to MetaCart
Abstract. We formalize a potentially rich new streaming model, the semistreaming model, that we believe is necessary for the fruitful study of efficient algorithms for solving problems on massive graphs whose edge sets cannot be stored in memory. In this model, the input graph, G = (V, E), is presented as a stream of edges (in adversarial order), and the storage space of an algorithm is bounded by O(n · polylog n), where n = V . We are particularly interested in algorithms that use only one pass over the input, but, for problems where this is provably insufficient, we also look at algorithms using constant or, in some cases, logarithmically many passes. In the course of this general study, we give semistreaming constant approximation algorithms for the unweighted and weighted matching problems, along with a further algorithm improvement for the bipartite case. We also exhibit log n / log log n semistreaming approximations to the diameter and the problem of computing the distance between specified vertices in a weighted graph. These are complemented by Ω(log (1−ɛ) n) lower bounds. 1
The String Edit Distance Matching Problems with Moves
, 2006
"... The edit distance between two strings S and R is defined to be the minimum number of character inserts, deletes and changes needed to convert R to S. Given a text string t of length n, and a pattern string p of length m, informally, the string edit distance matching problem is to compute the smalles ..."
Abstract

Cited by 59 (3 self)
 Add to MetaCart
The edit distance between two strings S and R is defined to be the minimum number of character inserts, deletes and changes needed to convert R to S. Given a text string t of length n, and a pattern string p of length m, informally, the string edit distance matching problem is to compute the smallest edit distance between p and substrings of t. We relax the problem so that (a) we allow an additional operation, namely, substring moves, and (b) we allow approximation of this string edit distance. Our result is a near linear time deterministic algorithm to produce a factor of O(log n log ∗ n) approximation to the string edit distance with moves. This is the first known significantly subquadratic algorithm for a string edit distance problem in which the distance involves nontrivial alignments. Our results are obtained by embedding strings into L1 vector space using a simplified parsing technique we call Edit
Distributed streams algorithms for sliding windows
 In Proc. ACM Symp. on Parallel Algorithms and Architectures (SPAA
, 2002
"... Massive data sets often arise as physically distributed, parallel data streams, and it is important to estimate various aggregates and statistics on the union of these streams. This paper presents algorithms for estimating aggregate functions over a “sliding window ” of the N most recent data items ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
Massive data sets often arise as physically distributed, parallel data streams, and it is important to estimate various aggregates and statistics on the union of these streams. This paper presents algorithms for estimating aggregate functions over a “sliding window ” of the N most recent data items in one or more streams. Our results include: 1. For a single stream, we present the first ɛapproximation scheme for the number of 1’s in a sliding window that is optimal in both worst case time and space. We also present the first ɛapproximation scheme for the sum of integers in [0..R] in a sliding window that is optimal in both worst case time and space (assuming R is at most polynomial in N). Both algorithms are deterministic and use only logarithmic memory words. 2. In contrast, we show that any deterministic algorithm that estimates, to within a small constant relative error, the number of 1’s (or the sum of integers) in a sliding window on the union of distributed streams requires Ω(N) space.
Graph distances in the streaming model: the value of space
 In ACMSIAM Symposium on Discrete Algorithms
, 2005
"... We investigate the importance of space when solving problems based on graph distance in the streaming model. In this model, the input graph is presented as a stream of edges in an arbitrary order. The main computational restriction of the model is that we have limited space and therefore cannot stor ..."
Abstract

Cited by 52 (10 self)
 Add to MetaCart
We investigate the importance of space when solving problems based on graph distance in the streaming model. In this model, the input graph is presented as a stream of edges in an arbitrary order. The main computational restriction of the model is that we have limited space and therefore cannot store all the streamed data; we are forced to make spaceefficient summaries of the data as we go along. For a graph of n vertices and m edges, we show that testing many graph properties, including connectivity (ergo any reasonable decision problem about distances) and bipartiteness, requires Ω(n) bits of space. Given this, we then investigate how the power of the model increases as we relax our space restriction. Our main result is an efficient randomized algorithm that constructs a (2t + 1)spanner in one pass. With high probability, it uses O(t · n 1+1/t log 2 n) bits of space and processes each edge in the stream in O(t 2 · n 1/t log n) time. We find approximations to diameter and girth via the log n constructed spanner. For t = Ω (), the space log log n requirement of the algorithm is O(n·polylog n), and the peredge processing time is O(polylog n). We also show a corresponding lower bound of t for the approximation ratio achievable when the space restriction is O(t · n1+1/t log 2 n). We then consider the scenario in which we are allowed multiple passes over the input stream. Here, we investigate whether allowing these extra passes will compensate for a given space restriction. We show that ∗This work was supported by the DoD University Research Initiative (URI) administered by the Office of Naval Research