Results 11  20
of
1,146
Multichannel Blind Identification: From Subspace to Maximum Likelihood Methods
 Proc. IEEE
, 1998
"... this paper is to review developments in blind channel identification and estimation within the estimation theoretical framework. We have paid special attention to the issue of identifiability, which is at the center of all blind channel estimation problems. Various existing algorithms are classified ..."
Abstract

Cited by 79 (2 self)
 Add to MetaCart
this paper is to review developments in blind channel identification and estimation within the estimation theoretical framework. We have paid special attention to the issue of identifiability, which is at the center of all blind channel estimation problems. Various existing algorithms are classified into the momentbased and the maximum likelihood (ML) methods. We further divide these algorithms based on the modeling of the input signal. If input is assumed to be random with prescribed statistics (or distributions), the corresponding blind channel estimation schemes are considered to be statistical. On the other hand, if the source does not have a statistical description, or although the source is random but the statistical properties of the source are not exploited, the corresponding estimation algorithms are classified as deterministic. Fig. 2 shows a map for different classes of algorithms and the organization of the paper.
On the Construction of Multivariate (pre)wavelets
, 1992
"... : A new approach for the construction of wavelets and prewavelets on IR d from multiresolution is presented. The method uses only properties of shiftinvariant spaces and orthogonal projectors from L 2 (IR d ) onto these spaces, and requires neither decay nor stability of the scaling function. F ..."
Abstract

Cited by 78 (11 self)
 Add to MetaCart
: A new approach for the construction of wavelets and prewavelets on IR d from multiresolution is presented. The method uses only properties of shiftinvariant spaces and orthogonal projectors from L 2 (IR d ) onto these spaces, and requires neither decay nor stability of the scaling function. Furthermore, this approach allows a simple derivation of previous, as well as new, constructions of wavelets, and leads to a complete resolution of questions concerning the nature of the intersection and the union of a scale of spaces to be used in a multiresolution. AMS (MOS) Subject Classifications: primary: 41A63, 46C99; secondary: 41A30, 41A15, 42B99, 46E20. Key Words and phrases: wavelets, multiresolution, shiftinvariant spaces, box splines. Authors' affiliation and address: 1 Center for Mathematical Sciences University of WisconsinMadison 610 Walnut St. Madison WI 53705 and 2 Department of Mathematics University of South Carolina Columbia SC 29208 This work was carried out while t...
On linear independence of integer translates of a finite number of functions
 Proc. Edinburgh Math. Soc
, 1992
"... We investigate linear independence of integer translates of a finite number of compactly supported functions in two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations. In the second case the coefficient sequences are restricted to be in som ..."
Abstract

Cited by 77 (32 self)
 Add to MetaCart
We investigate linear independence of integer translates of a finite number of compactly supported functions in two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations. In the second case the coefficient sequences are restricted to be in some ℓ p space (1 ≤ p ≤ ∞) and we are interested in bounding their ℓ pnorms in terms of the L pnorm of the linear combination of integer translates of the basis functions which uses these coefficients. In both cases we give necessary and sufficient conditions for linear independence of integer translates of the basis functions. Our characterization is based on a study of certain systems of linear partial difference and differential equations, which are of independent interest.
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 75 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Frames and Stable Bases for ShiftInvariant Subspaces of . . .
, 1994
"... Let X be a countable fundamental set in a Hilbert space H, and let T be the operator T : ` 2 (X) ! H : c 7! X x2X c(x)x: Whenever T is welldefined and bounded, X is said to be a Bessel sequence. If, in addition, ran T is closed, then X is a frame. Finally, a frame whose corresponding T is inje ..."
Abstract

Cited by 75 (22 self)
 Add to MetaCart
Let X be a countable fundamental set in a Hilbert space H, and let T be the operator T : ` 2 (X) ! H : c 7! X x2X c(x)x: Whenever T is welldefined and bounded, X is said to be a Bessel sequence. If, in addition, ran T is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis (also known as a Riesz basis). This paper considers the above three properties for subspaces H of L 2 (IR d ), and for sets X of the form X = fOE(\Delta \Gamma ff) : OE 2 \Phi; ff 2 ZZ d g; with \Phi either a singleton, a finite set, or, more generally, a countable set. The analysis is performed on the Fourier domain, where the two operators TT and T T are decomposed into a collection of simpler "fiber" operators. The main theme of the entire analysis is the characterization of each of the above three properties in terms of the analogous property of these simpler operators. AMS (MOS) Subject Classifications: 42C15 Key Words: Riesz bases, stable bases, shif...
Some Perturbation Theory for Linear Programming
 Mathematical Programming
, 1992
"... This paper examines a few relations between solution characteristics of an LP and the amount by which the LP must be perturbed to obtain either a primal infeasible LP or a dual infeasible LP. We consider such solution characteristics as the size of the optimal solution and the sensitivity of the opt ..."
Abstract

Cited by 72 (2 self)
 Add to MetaCart
This paper examines a few relations between solution characteristics of an LP and the amount by which the LP must be perturbed to obtain either a primal infeasible LP or a dual infeasible LP. We consider such solution characteristics as the size of the optimal solution and the sensitivity of the optimal value to data perturbations. We show, for example, that an LP has a large optimal solution, or has a sensitive optimal value, only if the instance is nearly primal infeasible or dual infeasible. The results are not particularly surprising but they do formalize an interesting viewpoint which apparently has not been made explicit in the linear programming literature. The results are rather general. Several of the results are valid for linear programs defined in arbitrary real normed spaces. A HahnBanach Theorem is the main tool employed in the analysis; given a closed convex set in a normed vector space and a point in the space but not in the set, there exists a continuous linear functional strictly separating the set from the point. We introduce notation, then the results. Let X;Y denote real vector spaces, each with a norm. We use the same notation (i.e. k k) for all norms, it being clear from context which norm is referred to. Let X
Dynamical systems, Measures and Fractals via Domain Theory
 Information and Computation
, 1995
"... We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L ar ..."
Abstract

Cited by 69 (19 self)
 Add to MetaCart
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors. We show that if (X, f) is chaotic, then so is (UX, U f). When X is locally compact UX, is a continuous bounded complete dcpo. If X is second countable as well, then UX will be omegacontinuous and can be given an effective structure. We show how strange attractors, attractors of iterated function systems (fractals) and Julia sets are obtained effectively as fixed points of deterministic functions on UX or fixed points of nondeterministic functions on CUX where C is the convex (Plotkin) power domain. We also show that the set, M(X), of finite Borel measures on X can be embedded in PUX, where P is the probabilistic power domain. This provides an effective framework for measure theory. We then prove that the invariant measure of an hyperbolic iterated function system with probabilities can be obtained as the unique fixed point of an associated continuous function on PUX.
Feedforward nets for interpolation and classification
 J. Comp. Syst. Sci
, 1992
"... This paper deals with singlehiddenlayer feedforward nets, studying various aspects of classification power and interpolation capability. In particular, a worstcase analysis shows that direct input to output connections in threshold nets double the recognition but not the interpolation power, whil ..."
Abstract

Cited by 69 (19 self)
 Add to MetaCart
This paper deals with singlehiddenlayer feedforward nets, studying various aspects of classification power and interpolation capability. In particular, a worstcase analysis shows that direct input to output connections in threshold nets double the recognition but not the interpolation power, while using sigmoids rather than thresholds allows doubling both. For other measures of classification, including the VapnikChervonenkis dimension, the effect of direct connections or sigmoidal activations is studied in the special case of twodimensional inputs. 1
A variational principle for domino tilings
"... Abstract. We formulate and prove a variational principle (in the sense of thermodynamics) for random domino tilings, or equivalently for the dimer model on a square grid. This principle states that a typical tiling of an arbitrary finite region can be described by a function that maximizes an entrop ..."
Abstract

Cited by 62 (11 self)
 Add to MetaCart
Abstract. We formulate and prove a variational principle (in the sense of thermodynamics) for random domino tilings, or equivalently for the dimer model on a square grid. This principle states that a typical tiling of an arbitrary finite region can be described by a function that maximizes an entropy integral. We associate an entropy to every sort of local behavior domino tilings can exhibit, and prove that almost all tilings lie within ε (for an appropriate metric) of the unique entropymaximizing solution. This gives a solution to the dimer problem with fully general boundary conditions, thereby resolving an issue first raised by Kasteleyn. Our methods also apply to dimer models on other grids and their associated tiling models, such as tilings of the plane by three orientations of unit lozenges. The effect of boundary conditions is, however, not entirely trivial and will be discussed in more detail in a subsequent paper. P. W. Kasteleyn, 1961 1.