Results 1  10
of
370
Flexible camera calibration by viewing a plane from unknown orientations
, 1999
"... We propose a flexible new technique to easily calibrate a camera. It only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. Either the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens distortion is modeled ..."
Abstract

Cited by 446 (6 self)
 Add to MetaCart
(Show Context)
We propose a flexible new technique to easily calibrate a camera. It only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. Either the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens distortion is modeled. The proposed procedure consists of a closedform solution, followed by a nonlinear refinement based on the maximum likelihood criterion. Both computer simulation and real data have been used to test the proposed technique, and very good results have been obtained. Compared with classical techniques which use expensive equipment such as two or three orthogonal planes, the proposed technique is easy to use and flexible. It advances 3D computer vision one step from laboratory environments to real world use. The corresponding software is available from the author’s Web page.
Determining the Epipolar Geometry and its Uncertainty: A Review
 International Journal of Computer Vision
, 1998
"... Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two i ..."
Abstract

Cited by 375 (8 self)
 Add to MetaCart
(Show Context)
Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3&times;3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A wellfounded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.
A Note on Platt's Probabilistic Outputs for Support Vector Machines
, 2003
"... Platt's probabilistic outputs for Support Vector Machines [6] has been popular for applications that require posterior class probabilities. In this note, we propose an improvement which theoretically converges and avoids numerical difficulties. A simpler and readytouse pseudo code is includ ..."
Abstract

Cited by 170 (5 self)
 Add to MetaCart
(Show Context)
Platt's probabilistic outputs for Support Vector Machines [6] has been popular for applications that require posterior class probabilities. In this note, we propose an improvement which theoretically converges and avoids numerical difficulties. A simpler and readytouse pseudo code is included.
SBA: a software package for generic sparse bundle adjustment
 ACM Transactions on Mathematical Software
, 2009
"... Foundation for Research and Technology—Hellas ..."
Support vector machines for speech recognition
 Proceedings of the International Conference on Spoken Language Processing
, 1998
"... Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative informati ..."
Abstract

Cited by 99 (2 self)
 Add to MetaCart
Statistical techniques based on hidden Markov Models (HMMs) with Gaussian emission densities have dominated signal processing and pattern recognition literature for the past 20 years. However, HMMs trained using maximum likelihood techniques suffer from an inability to learn discriminative information and are prone to overfitting and overparameterization. Recent work in machine learning has focused on models, such as the support vector machine (SVM), that automatically control generalization and parameterization as part of the overall optimization process. In this paper, we show that SVMs provide a significant improvement in performance on a static pattern classification task based on the Deterding vowel data. We also describe an application of SVMs to large vocabulary speech recognition, and demonstrate an improvement in error rate on a continuous alphadigit task (OGI Aphadigits) and a large vocabulary conversational speech task (Switchboard). Issues related to the development and optimization of an SVM/HMM hybrid system are discussed.
Forecasting Exchange Rates Using Feedforward And Recurrent Neural Networks
, 1994
"... this paper (based on a different data set) was presented at the 1992 North American Winter Meeting of the Econometric SocietyinNew Orleans, Louisiana. ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
this paper (based on a different data set) was presented at the 1992 North American Winter Meeting of the Econometric SocietyinNew Orleans, Louisiana.
Separable Nonlinear Least Squares: the Variable Projection Method and its Applications
 Institute of Physics, Inverse Problems
, 2002
"... this paper nonlinear data fitting problems which have as their underlying model a linear combination of nonlinear functions. More generally, one can also consider that there are two sets of unknown parameters, where one set is dependent on the other and can be explicitly eliminated. Models of this t ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
(Show Context)
this paper nonlinear data fitting problems which have as their underlying model a linear combination of nonlinear functions. More generally, one can also consider that there are two sets of unknown parameters, where one set is dependent on the other and can be explicitly eliminated. Models of this type are very common and we will show a variety of applications in different fields. Inasmuch as many inverse problems can be viewed as nonlinear data fitting problems, this material will be of interest to a wide crosssection of researchers and practitioners in parameter, material or system identification, signal analysis, the analysis of spectral data, medical and biological imaging, neural networks, robotics, telecommunications and model order reduction, to name a few
Object Pose from 2D to 3D Point and Line Correspondences
, 1995
"... In this paper we present a method for optimally estimating the rotation and translation between a camera and a 3D object from point and/or line correspondences. First we devise an error function and second weshowhowto minimize this error function. The quadratic nature of this function is made poss ..."
Abstract

Cited by 58 (9 self)
 Add to MetaCart
In this paper we present a method for optimally estimating the rotation and translation between a camera and a 3D object from point and/or line correspondences. First we devise an error function and second weshowhowto minimize this error function. The quadratic nature of this function is made possible by representing rotation and translation with a dual number quaternion. We provide a detailed account of the computational aspects of a trustregion optimization method. This method compares favourably with Newton's method which has extensively been used to solve the problem at hand, with FaugerasToscani's linear method [6] for calibrating a camera, and with the LevenbergMarquardt nonlinear optimization method. Finally we present some experimental results which demonstrate the robustness of our method with respect to image noise and matching errors.
Camera Calibration with OneDimensional Objects
, 2004
"... Camera calibration has been studied extensively in computer vision and photogrammetry and the proposed techniques in the literature include those using 3D apparatus (two or three planes orthogonal to each other or a plane undergoing a pure translation, etc.), 2D objects (planar patterns undergoing ..."
Abstract

Cited by 57 (1 self)
 Add to MetaCart
Camera calibration has been studied extensively in computer vision and photogrammetry and the proposed techniques in the literature include those using 3D apparatus (two or three planes orthogonal to each other or a plane undergoing a pure translation, etc.), 2D objects (planar patterns undergoing unknown motions), and 0D features (selfcalibration using unknown scene points). Yet, this paper proposes a new calibration technique using 1D objects (points aligned on a line), thus filling the missing dimension in calibration. In particular, we show that camera calibration is not possible with freemoving 1D objects, but can be solved if one point is fixed. A closedform solution is developed if six or more observations of such a 1D object are made. For higher accuracy, a nonlinear technique based on the maximum likelihood criterion is then used to refine the estimate. Singularities have also been studied. Besides the theoretical aspect, the proposed technique is also important in practice especially when calibrating multiple cameras mounted apart from each other, where the calibration objects are required to be visible simultaneously.