Results 1 
5 of
5
Galois theory for braided tensor categories and the modular closure
 Adv. Math
, 2000
"... Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Given a braided tensor ∗category C with conjugate (dual) objects and irreducible unit together with a full symmetric subcategory S we define a crossed product C ⋊ S. This construction yields a tensor ∗category with conjugates and an irreducible unit. (A ∗category is a category enriched over VectC with positive ∗operation.) A Galois correspondence is established between intermediate categories sitting between C and C ⋊S and closed subgroups of the Galois group Gal(C⋊S/C) = AutC(C⋊S) of C, the latter being isomorphic to the compact group associated to S by the duality theorem of Doplicher and Roberts. Denoting by D ⊂ C the full subcategory of degenerate objects, i.e. objects which have trivial monodromy with all objects of C, the braiding of C extends to a braiding of C⋊S iff S ⊂ D. Under this condition C⋊S has no nontrivial degenerate objects iff S = D. If the original category C is rational (i.e. has only finitely many isomorphism classes of irreducible objects) then the same holds for the new one. The category C ≡ C ⋊ D is called the modular closure of C since in the rational case it is modular, i.e. gives rise to a unitary representation of the modular group SL(2, Z). (In passing we prove that every braided tensor ∗category with conjugates automatically is a ribbon category, i.e. has a twist.) If all simple objects of S have dimension one the structure of the category C ⋊ S can be clarified quite explicitly in terms of group cohomology. 1
Functorial Factorization, Wellpointedness and Separability
"... A functorial treatment of factorization structures is presented, under extensive use of wellpointed endofunctors. Actually, socalled weak factorization systems are interpreted as pointed lax indexed endofunctors, and this sheds new light on the correspondence between reflective subcategories and f ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
A functorial treatment of factorization structures is presented, under extensive use of wellpointed endofunctors. Actually, socalled weak factorization systems are interpreted as pointed lax indexed endofunctors, and this sheds new light on the correspondence between reflective subcategories and factorization systems. The second part of the paper presents two important factorization structures in the context of pointed endofunctors: concordantdissonant and inseparableseparable.
The Reflectiveness of Covering Morphisms in Algebra And Geometry
, 1997
"... . Each full reflective subcategory X of a finitelycomplete category C gives rise to a factorization system (E; M) on C, where E consists of the morphisms of C inverted by the reflexion I : C ! X . Under a simplifying assumption which is satisfied in many practical examples, a morphism f : A ! B lie ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
. Each full reflective subcategory X of a finitelycomplete category C gives rise to a factorization system (E; M) on C, where E consists of the morphisms of C inverted by the reflexion I : C ! X . Under a simplifying assumption which is satisfied in many practical examples, a morphism f : A ! B lies in M precisely when it is the pullback along the unit jB : B ! IB of its reflexion If : IA ! IB; whereupon f is said to be a trivial covering of B. Finally, the morphism f : A ! B is said to be a covering of B if, for some effective descent morphism p : E ! B, the pullback p f of f along p is a trivial covering of E. This is the absolute notion of covering; there is also a more general relative one, where some class \Theta of morphisms of C is given, and the class Cov(B) of coverings of B is a subclass  or rather a subcategory  of the category C #B ae C=B whose objects are those f : A ! B with f 2 \Theta. Many questions in mathematics can be reduced to asking whether Cov(B) is re...
Extended Galois Theory And Dissonant Morphisms
"... For a given Galois structure on a category C and an effective descent morphism p : E!B in C we describe the category of socalled weakly split objects over (E; p) in terms of internal actions of the Galois (pre)groupoid of (E; p) with an additional structure. We explain that this generates various ..."
Abstract
 Add to MetaCart
For a given Galois structure on a category C and an effective descent morphism p : E!B in C we describe the category of socalled weakly split objects over (E; p) in terms of internal actions of the Galois (pre)groupoid of (E; p) with an additional structure. We explain that this generates various known results in categorical Galois theory and in particular two results of M. Barr and R. Diaconescu [BD]. We also give an elaborate list of examples and applications.
BOOLEAN GALOIS THEORIES
"... Abstract. We develop a general approach to adjunctions satisfying the admissibility condition useful for Boolean Galois Theories, i. e. for Galois Theories whose Galois (pre)groupoids are profinite. Various examples and applications are briefly described. ..."
Abstract
 Add to MetaCart
Abstract. We develop a general approach to adjunctions satisfying the admissibility condition useful for Boolean Galois Theories, i. e. for Galois Theories whose Galois (pre)groupoids are profinite. Various examples and applications are briefly described.