Results 21  30
of
98
Prooftheoretic analysis by iterated reflection
 Arch. Math. Logic
"... Progressions of iterated reflection principles can be used as a tool for ordinal analysis of formal systems. Technically, in some sense, they replace the use of omegarule. We compare the information obtained by this kind of analysis with the results obtained by the more usual prooftheoretic techni ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
(Show Context)
Progressions of iterated reflection principles can be used as a tool for ordinal analysis of formal systems. Technically, in some sense, they replace the use of omegarule. We compare the information obtained by this kind of analysis with the results obtained by the more usual prooftheoretic techniques. In some cases the techniques of iterated reflection principles allows to obtain sharper results, e.g., to define prooftheoretic ordinals relevant to logical complexity Π 0 1. We provide a more general version of the fine structure formulas for iterated reflection principles (due to U. Schmerl [24]). This allows us, in a uniform manner, to analyze main fragments of arithmetic axiomatized by restricted forms of induction, including IΣn, IΣ − n, IΠ − n and their combinations. We also obtain new conservation results relating the hierarchies of uniform and local reflection principles. In particular, we show that (for a sufficiently broad class of theories T) the uniform Σ1reflection principle for T is Σ2conservative over the corresponding local reflection principle. This bears some corollaries on the hierarchies of restricted induction schemata in arithmetic and provides a key tool for our generalization of Schmerl’s theorem. 1
Cycling in proofs and feasibility
 Transactions of the American Mathematical Society
, 1998
"... Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual b ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual but for which some very large number is defined to be not feasible. Parikh shows that sufficiently short proofs in this theory can only prove true statements of arithmetic. We pursue these topics in light of logical flow graphs of proofs (Buss, 1991) and show that Parikh’s lower bound for concrete consistency reflects the presence of cycles in the logical graphs of short proofs of feasibility of large numbers. We discuss two concrete constructions which show the bound to be optimal and bring out the dynamical aspect of formal proofs. For this paper the concept of feasible numbers has two roles, as an idea with its own life and as a vehicle for exploring general principles on the dynamics and geometry of proofs. Cycles can be seen as a measure of how complicated a proof can be. We prove that short proofs must have cycles. 1.
Näıve computational type theory
 Proof and SystemReliability, Proceedings of International Summer School Marktoberdorf, July 24 to August 5, 2001, volume 62 of NATO Science Series III
, 2002
"... ..."
(Show Context)
Relevance sensitive belief structures
 Annals of Mathematics and Artificial Intelligence
, 2000
"... Abstract We propose a new relevance sensitive model for representing and revising belief structures, which relies on a notion of partial language splitting and tolerates some amount of inconsistency while retaining classical logic. The model preserves an agent's ability to answer queries in a c ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
(Show Context)
Abstract We propose a new relevance sensitive model for representing and revising belief structures, which relies on a notion of partial language splitting and tolerates some amount of inconsistency while retaining classical logic. The model preserves an agent's ability to answer queries in a coherent way using Belnap's fourvalued logic. Axioms analogous to the AGM axioms hold for this new model. The distinction between implicit and explicit beliefs is represented and psychologically plausible, computationally tractable procedures for query answering and belief base revision are obtained.
From bounded arithmetic to second order arithmetic via automorphisms
 Logic in Tehran, Lect. Notes Log
"... Abstract. In this paper we examine the relationship between automorphisms of models of I∆0 (bounded arithmetic) and strong systems of arithmetic, such as P A, ACA0 (arithmetical comprehension schema with restricted induction), and Z2 (second order arithmetic). For example, we establish the following ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we examine the relationship between automorphisms of models of I∆0 (bounded arithmetic) and strong systems of arithmetic, such as P A, ACA0 (arithmetical comprehension schema with restricted induction), and Z2 (second order arithmetic). For example, we establish the following characterization of P A by proving a “reversal ” of a theorem of Gaifman: Theorem. The following are equivalent for completions T of I∆0: (a) T ⊢ P A; (b) Some model M = (M, · · ·) of T has a proper end extension N which satisfies I∆0 and for some automorphism j of N, M is precisely the fixed point set of j. Our results also shed light on the metamathematics of the QuineJensen system NF U of set theory with a universal set. 1.
Turning Cycles into Spirals
, 1999
"... Introduction The structure of LK proofs presents intriguing combinatorial aspects which turn out to be very difficult to study [6,8]. It is wellknown that as soon as one wants to intervene over the structure of a proof to simplify it, the complexity of the proof might increase enormously [16,12,14 ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
Introduction The structure of LK proofs presents intriguing combinatorial aspects which turn out to be very difficult to study [6,8]. It is wellknown that as soon as one wants to intervene over the structure of a proof to simplify it, the complexity of the proof might increase enormously [16,12,14]. There is a link between the presence of cut formulas with nested quantifiers and the nonelementary expansion needed to prove a theorem without the help of such formulas. If one considers the graph defined by tracing the flow of occurrences of formulas (in the sense of [2]) for proofs allowing a nonelementary compression, one Preprint submitted to Elsevier Preprint 7 November 1997 finds that such graphs contain cycles [5] or almost cyclic structures[6]. These cycles codify in a small space (i.e. a proof with a small number of lines) all the information which is present in the proof once cuts on formulas wit
On Feasible Numbers
 Logic and Computational Complexity, LNCS Vol. 960
, 1995
"... . A formal approach to feasible numbers, as well as to middle and small numbers, is introduced, based on ideas of Parikh (1971) and improving his formalization. The "vague" set F of feasible numbers intuitively satisfies the axioms 0 2 F , F + 1 ` F and 2 1000 62 F , where the latter is ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
. A formal approach to feasible numbers, as well as to middle and small numbers, is introduced, based on ideas of Parikh (1971) and improving his formalization. The "vague" set F of feasible numbers intuitively satisfies the axioms 0 2 F , F + 1 ` F and 2 1000 62 F , where the latter is stronger than a condition considered by Parikh, and seems to be treated rigorously here for the first time. Our technical considerations, though quite simple, have some unusual consequences. A discussion of methodological questions and of relevance to the foundations of mathematics and of computer science is an essential part of the paper. 1 Introduction How to formalize the intuitive notion of feasible numbers? To see what feasible numbers are, let us start by counting: 0,1,2,3, and so on. At this point, A.S. YeseninVolpin (in his "Analysis of potential feasibility", 1959) asks: "What does this `and so on' mean?" "Up to what extent `and so on'?" And he answers: "Up to exhaustion!" Note that by cos...
A CONSERVATION RESULT CONCERNING BOUNDED THEORIES AND THE COLLECTION AXIOM
, 1985
"... We present two proofs, one prooftheoretic and one modeltheoretic, showing that ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
(Show Context)
We present two proofs, one prooftheoretic and one modeltheoretic, showing that
The semantic tableaux version of the second incompleteness theorem extends almost to Robinson's Arithmetic Q
 in Automated Reasoning with Semantic Tableaux and Related Methods, SpringerVerlag LNCS 1847
"... Abstract. We will generalize the Second Incompleteness Theorem almost to the level of Robinson’s System Q. We will prove there exists a Π1 sentence V, such that if α is any finite consistent extension of Q+V then α will be unable to prove its Semantic Tableaux consistency. ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We will generalize the Second Incompleteness Theorem almost to the level of Robinson’s System Q. We will prove there exists a Π1 sentence V, such that if α is any finite consistent extension of Q+V then α will be unable to prove its Semantic Tableaux consistency.