Results 1  10
of
458
Packet Leashes: A Defense against Wormhole Attacks in Wireless Ad Hoc Networks
, 2003
"... Abstract — As mobile ad hoc network applications are deployed, security emerges as a central requirement. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has n ..."
Abstract

Cited by 462 (13 self)
 Add to MetaCart
Abstract — As mobile ad hoc network applications are deployed, security emerges as a central requirement. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts, and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them (possibly selectively) to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many ad hoc network routing protocols and locationbased wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes. I.
On the Importance of Checking Cryptographic Protocols for Faults
, 1997
"... We present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures. An implementation of RSA based on the Chinese Remainder Theorem can be broken using a single erroneous s ..."
Abstract

Cited by 289 (6 self)
 Add to MetaCart
We present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures. An implementation of RSA based on the Chinese Remainder Theorem can be broken using a single erroneous signature. Other implementations can be broken using a larger number of erroneous signatures. We also analyze the vulnerability to hardware faults of two identification protocols: FiatShamir and Schnorr. The FiatShamir protocol can be broken after a small number of erroneous executions of the protocol. Schnorr's protocol can also be broken, but a larger number of erroneous executions is needed. Keywords: Hardware faults, Cryptanalysis, RSA, FiatShamir, Schnorr, Public key systems, Identification protocols. 1 Introduction Direct attacks on the famous RSA cryptosystem seem to require that one factor the modulus. Therefore, it is interesting to ask whether there are attacks that avoid this....
Security Arguments for Digital Signatures and Blind Signatures
 JOURNAL OF CRYPTOLOGY
, 2000
"... Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the ..."
Abstract

Cited by 278 (35 self)
 Add to MetaCart
Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the
Proofs of partial knowledge and simplified design of witness hiding protocols
, 1994
"... Suppose we are given a proof of knowledge P in which a prover demonstrates that he knows a solution to a given problem instance. Suppose also that we have a secret sharing scheme S on n participants. Then under certain assumptions on P and S, we show how to transform P into a witness indistinguishab ..."
Abstract

Cited by 263 (12 self)
 Add to MetaCart
Suppose we are given a proof of knowledge P in which a prover demonstrates that he knows a solution to a given problem instance. Suppose also that we have a secret sharing scheme S on n participants. Then under certain assumptions on P and S, we show how to transform P into a witness indistinguishable protocol, in which the prover demonstrates knowledge of the solution to a subset of n problem instances corresponding to a qualified set of participants. For example, using a threshold scheme, the prover can show that he knows at least d out of n solutions without revealing which d instances are involved. If the instances are independently generated, this can lead to witness hiding protocols, even if P did not have this property. Our transformation produces a protocol with the same number of rounds as P and communication complexity n times that of P. Our results use no unproven complexity assumptions.
Short group signatures
 In proceedings of CRYPTO ’04, LNCS series
, 2004
"... Abstract. We construct a short group signature scheme. Signatures in our scheme are approximately the size of a standard RSA signature with the same security. Security of our group signature is based on the Strong DiffieHellman assumption and a new assumption in bilinear groups called the Decision ..."
Abstract

Cited by 262 (19 self)
 Add to MetaCart
Abstract. We construct a short group signature scheme. Signatures in our scheme are approximately the size of a standard RSA signature with the same security. Security of our group signature is based on the Strong DiffieHellman assumption and a new assumption in bilinear groups called the Decision Linear assumption. We prove security of our system, in the random oracle model, using a variant of the security definition for group signatures recently given by Bellare, Micciancio, and Warinschi. 1
Optimistic fair exchange of digital signatures
 IEEE Journal on Selected Areas in Communications
, 1998
"... Abstract. We present a new protocol that allows two players to exchange digital signatures over the Internet in a fair way, so that either each player gets the other’s signature, or neither player does. The obvious application is where the signatures represent items of value, for example, an elect ..."
Abstract

Cited by 239 (10 self)
 Add to MetaCart
Abstract. We present a new protocol that allows two players to exchange digital signatures over the Internet in a fair way, so that either each player gets the other’s signature, or neither player does. The obvious application is where the signatures represent items of value, for example, an electronic check or airline ticket. The protocol can also be adapted to exchange encrypted data. The protocol relies on a trusted third party, but is “optimistic, ” in that the third party is only needed in cases where one player attempts to cheat or simply crashes. A key feature of our protocol is that a player can always force a timely and fair termination, without the cooperation of the other player. 1
A practical and provably secure coalitionresistant group signature scheme
, 2000
"... A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes ..."
Abstract

Cited by 238 (20 self)
 Add to MetaCart
A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes or group identification scheme with revocable anonymity. This work introduces a new provably secure group signature and a companion identity escrow scheme that are significantly more efficient than the state of the art. In its interactive, identity escrow form, our scheme is proven secure and coalitionresistant under the strong RSA and the decisional DiffieHellman assumptions. The security of the noninteractive variant, i.e., the group signature scheme, relies additionally on the FiatShamir heuristic (also known as the random oracle model).
Untraceable Offline Cash in Wallets with Observers
, 1993
"... . Incorporating the property of untraceability of payments into offline electronic cash systems has turned out to be no easy matter. Two key concepts have been proposed in order to attain the same level of security against doublespending as can be trivially attained in systems with full traceabili ..."
Abstract

Cited by 226 (3 self)
 Add to MetaCart
. Incorporating the property of untraceability of payments into offline electronic cash systems has turned out to be no easy matter. Two key concepts have been proposed in order to attain the same level of security against doublespending as can be trivially attained in systems with full traceability of payments. The first of these, oneshow blind signatures, ensures traceability of doublespenders after the fact. The realizations of this concept that have been proposed unfortunately require either a great sacrifice in efficiency or seem to have questionable security, if not both. The second concept, wallets with observers, guarantees prior restraint of doublespending, while still offering traceability of doublespenders after the fact in case tamperresistance is compromised. No realization of this concept has yet been proposed in literature, which is a serious problem. It seems that the known cash systems cannot be extended to this important setting without significantly worsening ...
Lower Bounds for Discrete Logarithms and Related Problems
, 1997
"... . This paper considers the computational complexity of the discrete logarithm and related problems in the context of "generic algorithms"that is, algorithms which do not exploit any special properties of the encodings of group elements, other than the property that each group element is encoded a ..."
Abstract

Cited by 220 (11 self)
 Add to MetaCart
. This paper considers the computational complexity of the discrete logarithm and related problems in the context of "generic algorithms"that is, algorithms which do not exploit any special properties of the encodings of group elements, other than the property that each group element is encoded as a unique binary string. Lower bounds on the complexity of these problems are proved that match the known upper bounds: any generic algorithm must perform\Omega (p 1=2 ) group operations, where p is the largest prime dividing the order of the group. Also, a new method for correcting a faulty DiffieHellman oracle is presented. 1 Introduction The discrete logarithm problem plays an important role in cryptography. The problem is this: given a generator g of a cyclic group G, and an element g x in G, determine x. A related problem is the DiffieHellman problem: given g x and g y , determine g xy . In this paper, we study the computational power of "generic algorithms" that is, ...