Results 11  20
of
937
NonMalleable Cryptography
 SIAM Journal on Computing
, 2000
"... The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. ..."
Abstract

Cited by 447 (22 self)
 Add to MetaCart
The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. The same concept makes sense in the contexts of string commitment and zeroknowledge proofs of possession of knowledge. Nonmalleable schemes for each of these three problems are presented. The schemes do not assume a trusted center; a user need not know anything about the number or identity of other system users. Our cryptosystem is the first proven to be secure against a strong type of chosen ciphertext attack proposed by Rackoff and Simon, in which the attacker knows the ciphertext she wishes to break and can query the decryption oracle on any ciphertext other than the target.
Security and Composition of Multiparty Cryptographic Protocols
 JOURNAL OF CRYPTOLOGY
, 1998
"... We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions f ..."
Abstract

Cited by 389 (18 self)
 Add to MetaCart
We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions follow the general paradigm of known definitions; yet some substantial modifications and simplifications are introduced. The composition operation is the natural `subroutine substitution' operation, formalized by Micali and Rogaway. We consider several standard settings for multiparty protocols, including the cases of eavesdropping, Byzantine, nonadaptive and adaptive adversaries, as well as the informationtheoretic and the computational models. In particular, in the computational model we provide the first definition of security of protocols that is shown to be preserved under composition.
A hardcore predicate for all oneway functions
 In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing
, 1989
"... Abstract rity of f. In fact, for inputs (to f*) of practical size, the pieces effected by f are so small A central tool in constructing pseudorandom that f can be inverted (and the “hardcore” generators, secure encryption functions, and bit computed) by exhaustive search. in other areas are “hardc ..."
Abstract

Cited by 356 (5 self)
 Add to MetaCart
Abstract rity of f. In fact, for inputs (to f*) of practical size, the pieces effected by f are so small A central tool in constructing pseudorandom that f can be inverted (and the “hardcore” generators, secure encryption functions, and bit computed) by exhaustive search. in other areas are “hardcore ” predicates b In this paper we show that every oneof functions (permutations) f, discovered in way function, padded to the form f(p,z) = [Blum Micali $21. Such b ( 5) cannot be effi (P,9(X)), llPl / = 11z//, has bY itself a hardcore ciently guessed (substantially better than SO predicate of the same (within a polynomial) 50) given only f(z). Both b, f are computable security. Namely, we prove a conjecture of in polynomial time. [Levin 87, sec. 5.6.21 that the sca1a.r product [Yao 821 transforms any oneway function of boolean vectors p, x is a hardcore of every f into a more complicated one, f*, which has oneway function f(p, x) = (p,g(x)). The rea hardcore predicate. The construction ap sult extends to multiple (up to the logarithm plies the original f to many small pieces of of security) such bits and to any distribution the input to f * just to get one “hardcore ” on the z’s for which f is hard to invert.
A Concrete Security Treatment of Symmetric Encryption
 Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE
, 1997
"... We study notions and schemes for symmetric (ie. private key) encryption in a concrete security framework. We give four di erent notions of security against chosen plaintext attack and analyze the concrete complexity ofreductions among them, providing both upper and lower bounds, and obtaining tight ..."
Abstract

Cited by 351 (57 self)
 Add to MetaCart
We study notions and schemes for symmetric (ie. private key) encryption in a concrete security framework. We give four di erent notions of security against chosen plaintext attack and analyze the concrete complexity ofreductions among them, providing both upper and lower bounds, and obtaining tight relations. In this way we classify notions (even though polynomially reducible to each other) as stronger or weaker in terms of concrete security. Next we provide concrete security analyses of methods to encrypt using a block cipher, including the most popular encryption method, CBC. We establish tight bounds (meaning
Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption)
, 2000
"... Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability. ..."
Abstract

Cited by 333 (18 self)
 Add to MetaCart
Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability.
Universal OneWay Hash Functions and their Cryptographic Applications
, 1989
"... We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We ..."
Abstract

Cited by 313 (13 self)
 Add to MetaCart
We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We prove constructively that universal oneway hash functions exist if any 11 oneway functions exist. Among the various applications of the primitive is a OneWay based Secure Digital Signature Scheme which is existentially secure against adoptive attacks. Previously, all provably secure signature schemes were based on the stronger mathematical assumption that trapdoor oneway functions exist. Key words. cryptography, randomized algorithms AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10 Part of this work was done while the authors were at the IBM Almaden Research Center. The first author was supported in part by NSF grant CCR88 13632. A preliminary version of this work app...
Calibrating noise to sensitivity in private data analysis
 In Proceedings of the 3rd Theory of Cryptography Conference
, 2006
"... Abstract. We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the socalled true answer is the result of applying f to the datab ..."
Abstract

Cited by 309 (47 self)
 Add to MetaCart
Abstract. We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the socalled true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which f =P i g(xi), where xi denotes the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation results showing the increased value of interactive sanitization mechanisms over noninteractive. 1 Introduction We continue a line of research initiated in [10, 11] on privacy in statistical databases. A statistic is a quantity computed from a sample. Intuitively, if the database is a representative sample of an underlying population, the goal ofa privacypreserving statistical database is to enable the user to learn properties of the population as a whole while protecting the privacy of the individualcontributors.
Boosting and differential privacy
, 2010
"... Abstract—Boosting is a general method for improving the accuracy of learning algorithms. We use boosting to construct improved privacypreserving synopses of an input database. These are data structures that yield, for a given set Q of queries over an input database, reasonably accurate estimates of ..."
Abstract

Cited by 293 (8 self)
 Add to MetaCart
Abstract—Boosting is a general method for improving the accuracy of learning algorithms. We use boosting to construct improved privacypreserving synopses of an input database. These are data structures that yield, for a given set Q of queries over an input database, reasonably accurate estimates of the responses to every query in Q, even when the number of queries is much larger than the number of rows in the database. Given a base synopsis generator that takes a distribution on Q and produces a “weak ” synopsis that yields “good ” answers for a majority of the weight in Q, our Boosting for Queries algorithm obtains a synopsis that is good for all of Q. We ensure privacy for the rows of the database, but the boosting is performed on the queries. We also provide the first synopsis generators for arbitrary sets of arbitrary lowsensitivity
Hardness vs. randomness
 Journal of Computer and System Sciences
, 1994
"... We present a simple new construction of a pseudorandom bit generator, based on the constant depth generators of [N]. It stretches a short string of truly random bits into a long string that looks random to any algorithm from a complexity class C (eg P, NC, PSPACE,...) using an arbitrary function tha ..."
Abstract

Cited by 284 (30 self)
 Add to MetaCart
We present a simple new construction of a pseudorandom bit generator, based on the constant depth generators of [N]. It stretches a short string of truly random bits into a long string that looks random to any algorithm from a complexity class C (eg P, NC, PSPACE,...) using an arbitrary function that is hard for C. This construction reveals an equivalence between the problem of proving lower bounds and the problem of generating good pseudorandom sequences. Our construction has many consequences. The most direct one is that efficient deterministic simulation of randomized algorithms is possible under much weaker assumptions than previously known. The efficiency ofthe simulations depends on the strength of the assumptions, and may achieve P =BPP. Webelieve that our results are very strong evidence that the gap between randomized and deterministic complexity is not large. Using the known lower bounds for constant depth circuits, our construction yields an unconditionally proven pseudorandom generator for constant depth circuits. As an application of this generator we characterize the power of NP with a random oracle. 1.
Analysis of keyexchange protocols and their use for building secure channels
, 2001
"... Abstract. We present a formalism for the analysis of keyexchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any keyexchange protocol that satisfies the security definition can be composed with ..."
Abstract

Cited by 261 (16 self)
 Add to MetaCart
Abstract. We present a formalism for the analysis of keyexchange protocols that combines previous definitional approaches and results in a definition of security that enjoys some important analytical benefits: (i) any keyexchange protocol that satisfies the security definition can be composed with symmetric encryption and authentication functions to provide provably secure communication channels (as defined here); and (ii) the definition allows for simple modular proofs of security: one can design and prove security of keyexchange protocols in an idealized model where the communication links are perfectly authenticated, and then translate them using general tools to obtain security in the realistic setting of adversarycontrolled links. We exemplify the usability of our results by applying them to obtain the proof of two classes of keyexchange protocols, DiffieHellman and keytransport, authenticated via symmetric or asymmetric techniques. 1