Results 1  10
of
83
Combinatorial Geometry
, 1995
"... Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), and let F be a collection of subsets of ~d, each of which is defined by a constant number of bounded degree polynomial inequalities. We consider the following Frange searching problem: Given P, build a data stru ..."
Abstract

Cited by 164 (26 self)
 Add to MetaCart
Abstract. Let P be a set of n points in ~d (where d is a small fixed positive integer), and let F be a collection of subsets of ~d, each of which is defined by a constant number of bounded degree polynomial inequalities. We consider the following Frange searching problem: Given P, build a data structure for efficient answering of queries of the form, &quot;Given a 7 ~ F, count (or report) the points of P lying in 7.&quot; Generalizing the simplex range searching techniques, we give a solution with nearly linear space and preprocessing time and with O(n 1 x/b+~) query time, where d < b < 2d 3 and ~> 0 is an arbitrarily small constant. The acutal value of b is related to the problem of partitioning arrangements of algebraic surfaces into cells with a constant description complexity. We present some of the applications of Frange searching problem, including improved ray shooting among triangles in ~3 1.
On LinearTime Deterministic Algorithms for Optimization Problems in Fixed Dimension
, 1992
"... We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. ..."
Abstract

Cited by 92 (10 self)
 Add to MetaCart
We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. We show that the algorithm works in a fairly general abstract setting, which allows us to solve various other problems (such as finding the maximum volume ellipsoid inscribed into the intersection of n halfspaces) in linear time.
On Range Searching with Semialgebraic Sets
 DISCRETE COMPUT. GEOM
, 1994
"... Let P be a set of n points in R d (where d is a small fixed positive integer), and let \Gamma be a collection of subsets of R d , each of which is defined by a constant number of bounded degree polynomials. We consider the following \Gammarange searching problem: Given P , build a data structur ..."
Abstract

Cited by 80 (22 self)
 Add to MetaCart
Let P be a set of n points in R d (where d is a small fixed positive integer), and let \Gamma be a collection of subsets of R d , each of which is defined by a constant number of bounded degree polynomials. We consider the following \Gammarange searching problem: Given P , build a data structure for efficient answering of queries of the form `Given a fl 2 \Gamma, count (or report) the points of P lying in fl'. Generalizing the simplex range searching techniques, we give a solution with nearly linear space and preprocessing time and with O(n 1\Gamma1=b+ffi ) query time, where d b 2d \Gamma 3 and ffi ? 0 is an arbitrarily small constant. The actual value of b is related to the problem of partitioning arrangements of algebraic surfaces into constantcomplexity cells. We present some of the applications of \Gammarange searching problem, including improved ray shooting among triangles in R³.
Range Searching
, 1996
"... Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , an ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , and let R be a family of subsets; elements of R are called ranges . We wish to preprocess S into a data structure so that for a query range R, the points in S " R can be reported or counted efficiently. Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If we are only interested in answering a single query, it can be done in linear time, using linear space, by simply checking for each point p 2 S whether p lies in the query range.
Geometric Applications of a Randomized Optimization Technique
 Discrete Comput. Geom
, 1999
"... We propose a simple, general, randomized technique to reduce certain geometric optimization problems to their corresponding decision problems. These reductions increase the expected time complexity by only a constant factor and eliminate extra logarithmic factors in previous, often more complicated, ..."
Abstract

Cited by 48 (6 self)
 Add to MetaCart
We propose a simple, general, randomized technique to reduce certain geometric optimization problems to their corresponding decision problems. These reductions increase the expected time complexity by only a constant factor and eliminate extra logarithmic factors in previous, often more complicated, deterministic approaches (such as parametric searching). Faster algorithms are thus obtained for a variety of problems in computational geometry: finding minimal kpoint subsets, matching point sets under translation, computing rectilinear pcenters and discrete 1centers, and solving linear programs with k violations. 1 Introduction Consider the classic randomized algorithm for finding the minimum of r numbers minfA[1]; : : : ; A[r]g: Algorithm randmin 1. randomly pick a permutation hi 1 ; : : : ; i r i of h1; : : : ; ri 2. t /1 3. for k = 1; : : : ; r do 4. if A[i k ] ! t then 5. t / A[i k ] 6. return t By a wellknown fact [27, 44], the expected number of times that step 5 is execut...
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
An optimal randomized algorithm for maximum tukey depth
 In SODA ’04: Proceedings of the fifteenth annual ACMSIAM symposium on Discrete algorithms
, 2004
"... ..."
LowDimensional Linear Programming with Violations
 In Proc. 43th Annu. IEEE Sympos. Found. Comput. Sci
, 2002
"... Two decades ago, Megiddo and Dyer showed that linear programming in 2 and 3 dimensions (and subsequently, any constant number of dimensions) can be solved in linear time. In this paper, we consider linear programming with at most k violations: finding a point inside all but at most k of n given half ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
Two decades ago, Megiddo and Dyer showed that linear programming in 2 and 3 dimensions (and subsequently, any constant number of dimensions) can be solved in linear time. In this paper, we consider linear programming with at most k violations: finding a point inside all but at most k of n given halfspaces. We give a simple algorithm in 2d that runs in O((n + k ) log n) expected time; this is faster than earlier algorithms by Everett, Robert, and van Kreveld (1993) and Matousek (1994) and is probably nearoptimal for all k n=2. A (theoretical) extension of our algorithm in 3d runs in near O(n + k ) expected time. Interestingly, the idea is based on concavechain decompositions (or covers) of the ( k)level, previously used in proving combinatorial klevel bounds.
Constructing Levels in Arrangements and Higher Order Voronoi Diagrams
 SIAM J. COMPUT
, 1994
"... We give simple randomized incremental algorithms for computing the klevel in an arrangement of n hyperplanes in two and threedimensional space. The expected running time of our algorithms is O(nk+nff(n) log n) for the planar case, and O(nk 2 +n log 3 n) for the threedimensional case. Both bo ..."
Abstract

Cited by 42 (10 self)
 Add to MetaCart
We give simple randomized incremental algorithms for computing the klevel in an arrangement of n hyperplanes in two and threedimensional space. The expected running time of our algorithms is O(nk+nff(n) log n) for the planar case, and O(nk 2 +n log 3 n) for the threedimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the klevel in an arrangement of discs or xmonotone Jordan curves in the plane. Our approach can also be used to compute the klevel; this yields a randomized algorithm for computing the orderk Voronoi diagram of n points in the plane in expected time O(k(n \Gamma k) log n + n log 3 n).