Results 1  10
of
227
The primes contain arbitrarily long arithmetic progressions
 Ann. of Math
"... Abstract. We prove that there are arbitrarily long arithmetic progressions of primes. ..."
Abstract

Cited by 276 (35 self)
 Add to MetaCart
(Show Context)
Abstract. We prove that there are arbitrarily long arithmetic progressions of primes.
Linear equations in primes
 Annals of Mathematics
"... Abstract. Consider a system Ψ of nonconstant affinelinear forms ψ1,..., ψt: Z d → Z, no two of which are linearly dependent. Let N be a large integer, and let K ⊆ [−N, N] d be convex. A generalisation of a famous and difficult open conjecture of Hardy and Littlewood predicts an asymptotic, as N → ..."
Abstract

Cited by 83 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Consider a system Ψ of nonconstant affinelinear forms ψ1,..., ψt: Z d → Z, no two of which are linearly dependent. Let N be a large integer, and let K ⊆ [−N, N] d be convex. A generalisation of a famous and difficult open conjecture of Hardy and Littlewood predicts an asymptotic, as N → ∞, for the number of integer points n ∈ Z d ∩ K for which the integers ψ1(n),..., ψt(n) are simultaneously prime. This implies many other wellknown conjectures, such as the twin prime conjecture and the (weak) Goldbach conjecture. It also allows one to count the number of solutions in a convex range to any simultaneous linear system of equations, in which all unknowns are required to be prime. In this paper we (conditionally) verify this asymptotic under the assumption that no two of the affinelinear forms ψ1,..., ψt are affinely related; this excludes the important “binary ” cases such as the twin prime or Goldbach conjectures, but does allow one to count “nondegenerate ” configurations such as arithmetic progressions. Our result assumes two families of conjectures, which we term the inverse Gowersnorm conjecture (GI(s)) and the Möbius and nilsequences conjecture (MN(s)), where s ∈ {1, 2,...} is
The Riemann Zeros and Eigenvalue Asymptotics
 SIAM Rev
, 1999
"... Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many feat ..."
Abstract

Cited by 61 (10 self)
 Add to MetaCart
(Show Context)
Comparison between formulae for the counting functions of the heights t n of the Riemann zeros and of semiclassical quantum eigenvalues En suggests that the t n are eigenvalues of an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system with hamiltonian H cl . Many features of H cl are provided by the analogy; for example, the "Riemann dynamics" should be chaotic and have periodic orbits whose periods are multiples of logarithms of prime numbers. Statistics of the t n have a similar structure to those of the semiclassical En ; in particular, they display randommatrix universality at short range, and nonuniversal behaviour over longer ranges. Very refined features of the statistics of the t n can be computed accurately from formulae with quantum analogues. The RiemannSiegel formula for the zeta function is described in detail. Its interpretation as a relation between long and short periodic orbits gives further insights into the quantum spectral fluctuations. We speculate that the Riemann dynamics is related to the trajectories generated by the classical hamiltonian H cl = XP. Key words. spectral asymptotics, number theory AMS subject classifications. 11M26, 11M06, 35P20, 35Q40, 41A60, 81Q10, 81Q50 PII. S0036144598347497 1.
Feedback shift registers, 2adic span, and combiners with memory
 Journal of Cryptology
, 1997
"... Feedback shift registers with carry operation (FCSR’s) are described, implemented, and analyzed with respect to memory requirements, initial loading, period, and distributional properties of their output sequences. Many parallels with the theory of linear feedback shift registers (LFSR’s) are presen ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
(Show Context)
Feedback shift registers with carry operation (FCSR’s) are described, implemented, and analyzed with respect to memory requirements, initial loading, period, and distributional properties of their output sequences. Many parallels with the theory of linear feedback shift registers (LFSR’s) are presented, including a synthesis algorithm (analogous to the BerlekampMassey algorithm for LFSR’s) which, for any pseudorandom sequence, constructs the smallest FCSR which will generate the sequence. These techniques are used to attack the summation cipher. This analysis gives a unified approach to the study of pseudorandom sequences, arithmetic codes, combiners with memory, and the MarsagliaZaman random number generator. Possible variations on the FCSR architecture are indicated at the end. Index Terms – Binary sequence, shift register, stream cipher, combiner with memory, cryptanalysis, 2adic numbers, arithmetic code, 1/q sequence, linear span. 1
Higher correlations of divisor sums related to primes, II: Variations of . . .
, 2007
"... We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
(Show Context)
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet Lfunctions, we obtain an Ω±result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ωresults for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
Affine linear sieve, expanders, and sumproduct
"... This paper is concerned with the following general problem. For j = 1, 2,...,k let Aj be invertible integer coefficient polynomial maps of Z n to Z n (here n ≥ 1 and the inverses of Aj’s are assumed to be of the same type). Let Λ be the group generated by A1,...,Ak and ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
(Show Context)
This paper is concerned with the following general problem. For j = 1, 2,...,k let Aj be invertible integer coefficient polynomial maps of Z n to Z n (here n ≥ 1 and the inverses of Aj’s are assumed to be of the same type). Let Λ be the group generated by A1,...,Ak and
Harald Cramér and the distribution of prime numbers
 Scandanavian Actuarial J
, 1995
"... “It is evident that the primes are randomly distributed but, unfortunately, we don’t know what ‘random ’ means. ” — R. C. Vaughan (February 1990). After the first world war, Cramér began studying the distribution of prime numbers, guided by Riesz and MittagLeffler. His works then, and later in the ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
(Show Context)
“It is evident that the primes are randomly distributed but, unfortunately, we don’t know what ‘random ’ means. ” — R. C. Vaughan (February 1990). After the first world war, Cramér began studying the distribution of prime numbers, guided by Riesz and MittagLeffler. His works then, and later in the midthirties, have had a profound influence on the way mathematicians think about the distribution of prime numbers. In this article, we shall focus on how Cramér’s ideas have directed and motivated research ever since. One can only fully appreciate the significance of Cramér’s contributions by viewing his work in the appropriate historical context. We shall begin our discussion with the ideas of the ancient Greeks, Euclid and Eratosthenes. Then we leap in time to the nineteenth century, to the computations and heuristics of Legendre and Gauss, the extraordinarily analytic insights of Dirichlet and Riemann, and the crowning glory of these ideas, the proof the “Prime Number Theorem ” by Hadamard and de la Vallée Poussin in 1896. We pick up again in the 1920’s with the questions asked by Hardy and Littlewood,
Primes in Tuples I
"... We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the ElliottHalberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. E ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
(Show Context)
We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the ElliottHalberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance apart. Unconditionally, we prove that there exist consecutive primes which are closer than any arbitrarily small multiple of the average spacing, that is, pn+1 − pn lim inf =0. n→ ∞ log pn We will quantify this result further in a later paper (see (1.9) below).
PRIMES is in P
 Ann. of Math
, 2002
"... We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite. 1 ..."
Abstract

Cited by 36 (2 self)
 Add to MetaCart
We present an unconditional deterministic polynomialtime algorithm that determines whether an input number is prime or composite. 1