Results 1  10
of
22
On the Proof Complexity of Deep Inference
, 2000
"... We obtain two results about the proof complexity of deep inference: 1) deepinference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; 2) there are analytic deepinference proof systems that exhibit an exponential ..."
Abstract

Cited by 41 (14 self)
 Add to MetaCart
(Show Context)
We obtain two results about the proof complexity of deep inference: 1) deepinference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; 2) there are analytic deepinference proof systems that exhibit an exponential speedup over analytic Gentzen proof systems that they polynomially simulate.
From proof nets to the free * autonomous category
 Logical Methods in Computer Science, 2(4:3):1–44, 2006. Available from: http://arxiv.org/abs/cs/0605054. [McK05] Richard McKinley. Classical categories and deep inference. In Structures and Deduction 2005 (Satellite Workshop of ICALP’05
, 2005
"... Vol. 2 (4:3) 2006, pp. 1–44 www.lmcsonline.org ..."
Naming proofs in classical propositional logic
 IN PAWE̷L URZYCZYN, EDITOR, TYPED LAMBDA CALCULI AND APPLICATIONS, TLCA 2005, VOLUME 3461 OF LECTURE
"... We present a theory of proof denotations in classical propositional logic. The abstract definition is in terms of a semiring of weights, and two concrete instances are explored. With the Boolean semiring we get a theory of classical proof nets, with a geometric correctness criterion, a sequentiali ..."
Abstract

Cited by 25 (7 self)
 Add to MetaCart
(Show Context)
We present a theory of proof denotations in classical propositional logic. The abstract definition is in terms of a semiring of weights, and two concrete instances are explored. With the Boolean semiring we get a theory of classical proof nets, with a geometric correctness criterion, a sequentialization theorem, and a strongly normalizing cutelimination procedure. This gives us a “Boolean ” category, which is not a poset. With the semiring of natural numbers, we obtain a sound semantics for classical logic, in which fewer proofs are identified. Though a “real” sequentialization theorem is missing, these proof nets have a grip on complexity issues. In both cases the cut elimination procedure is closely related to its equivalent in the calculus of structures.
On the axiomatisation of boolean categories with and without medial
 THEORY APPL. CATEG
, 2007
"... ..."
System BV is NPcomplete
, 2005
"... System BV is an extension of multiplicative linear logic (MLL) with the rules mix, nullary mix, and a selfdual, noncommutative logical operator, called seq. While the rules mix and nullary mix extend the deductive system, the operator seq extends the language of MLL. Due to the operator seq, syste ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
System BV is an extension of multiplicative linear logic (MLL) with the rules mix, nullary mix, and a selfdual, noncommutative logical operator, called seq. While the rules mix and nullary mix extend the deductive system, the operator seq extends the language of MLL. Due to the operator seq, system BV extends the applications of MLL to those where sequential composition is crucial, e.g., concurrency theory. System FBV is an extension of MLL with the rules mix and nullary mix. In this paper, by relying on the fact that system BV is a conservative extension of system FBV, I show that system BV is NPcomplete by encoding the 3Partition problem in FBV. I provide a simple completeness proof of this encoding by resorting to a novel proof theoretical method for reducing the nondeterminism in proof search, which is also of independent interest.
Towards Hilbert's 24th Problem: Combinatorial Proof Invariants
, 2006
"... Proofs Without Syntax [37] introduced polynomialtime checkable combinatorial proofs for classical propositional logic. This sequel approaches Hilbert’s 24 th Problem with combinatorial proofs as abstract invariants for sequent calculus proofs, analogous to homotopy groups as abstract invariants for ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Proofs Without Syntax [37] introduced polynomialtime checkable combinatorial proofs for classical propositional logic. This sequel approaches Hilbert’s 24 th Problem with combinatorial proofs as abstract invariants for sequent calculus proofs, analogous to homotopy groups as abstract invariants for topological spaces. The paper lifts a simple, strongly normalising cut elimination from combinatorial proofs to sequent calculus, factorising away the mechanical commutations of structural rules which litter traditional syntactic cut elimination. Sequent calculus fails to be surjective onto combinatorial proofs: the paper extracts a semantically motivated closure of sequent calculus from which there is a surjection, pointing towards an abstract combinatorial refinement of Herbrand’s theorem.
Locality for Classical Logic
"... In this paper we will see deductive systems for classical propositional and predicate logic in the calculus of structures. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they drop the restriction that rules only apply to the main connective of a formula: thei ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
In this paper we will see deductive systems for classical propositional and predicate logic in the calculus of structures. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they drop the restriction that rules only apply to the main connective of a formula: their rules apply anywhere deeply inside a formula. This allows to observe very clearly the symmetry between identity axiom and the cut rule. This symmetry allows to reduce the cut rule to atomic form in a way which is dual to reducing the identity axiom to atomic form. We also reduce weakening and even contraction to atomic form. This leads to inference rules that are local: they do not require the inspection of expressions of arbitrary size.
Expansion nets: proofnets for propositional classical logic
 IN PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, LPAR’10
, 2010
"... We give a calculus of proofnets for classical propositional logic. These nets improve on a proposal due to Robinson by validating the associativity and commutativity of contraction, and provide canonical representants for classical sequent proofs modulo natural equivalences. We present the relation ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We give a calculus of proofnets for classical propositional logic. These nets improve on a proposal due to Robinson by validating the associativity and commutativity of contraction, and provide canonical representants for classical sequent proofs modulo natural equivalences. We present the relationship between sequent proofs and proofnets as an annotated sequent calculus, deriving formulae decorated with expansion/deletion trees. We then see a subcalculus, expansion nets, which in addition to these good properties has a polynomialtime correctness criterion.
What is the Problem with Proof Nets for Classical Logic?
"... Abstract. This paper is an informal (and nonexhaustive) overview over some existing notions of proof nets for classical logic, and gives some hints why they might be considered to be unsatisfactory. 1 ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
Abstract. This paper is an informal (and nonexhaustive) overview over some existing notions of proof nets for classical logic, and gives some hints why they might be considered to be unsatisfactory. 1
Proof Nets and the Identity of Proofs
, 2006
"... These are the notes for a 5lecturecourse given at ESSLLI 2006 in Malaga, Spain. The URL ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
These are the notes for a 5lecturecourse given at ESSLLI 2006 in Malaga, Spain. The URL