Results 1  10
of
71
On the Proof Complexity of Deep Inference
, 2000
"... We obtain two results about the proof complexity of deep inference: 1) deepinference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; 2) there are analytic deepinference proof systems that exhibit an exponential ..."
Abstract

Cited by 31 (13 self)
 Add to MetaCart
We obtain two results about the proof complexity of deep inference: 1) deepinference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; 2) there are analytic deepinference proof systems that exhibit an exponential speedup over analytic Gentzen proof systems that they polynomially simulate.
Deep Sequent Systems for Modal Logic
 ARCHIVE FOR MATHEMATICAL LOGIC
"... We see a systematic set of cutfree axiomatisations for all the basic normal modal logics formed by some combination the axioms d,t,b,4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the litera ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We see a systematic set of cutfree axiomatisations for all the basic normal modal logics formed by some combination the axioms d,t,b,4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.
Normalisation control in deep inference via atomic flows
, 2008
"... Abstract. We introduce ‘atomic flows’: they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a n ..."
Abstract

Cited by 23 (11 self)
 Add to MetaCart
Abstract. We introduce ‘atomic flows’: they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in deep inference, which is more general than other syntactic paradigms, and where normalisation is more difficult to control. We argue that atomic flows are a significant technical advance for normalisation theory, because 1) the technique they support is largely independent of syntax; 2) indeed, it is largely independent of logical inference rules; 3) they constitute a powerful geometric formalism, which is more intuitive than syntax. 1.
Naming proofs in classical propositional logic
 IN PAWE̷L URZYCZYN, EDITOR, TYPED LAMBDA CALCULI AND APPLICATIONS, TLCA 2005, VOLUME 3461 OF LECTURE
"... We present a theory of proof denotations in classical propositional logic. The abstract definition is in terms of a semiring of weights, and two concrete instances are explored. With the Boolean semiring we get a theory of classical proof nets, with a geometric correctness criterion, a sequentiali ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
We present a theory of proof denotations in classical propositional logic. The abstract definition is in terms of a semiring of weights, and two concrete instances are explored. With the Boolean semiring we get a theory of classical proof nets, with a geometric correctness criterion, a sequentialization theorem, and a strongly normalizing cutelimination procedure. This gives us a “Boolean ” category, which is not a poset. With the semiring of natural numbers, we obtain a sound semantics for classical logic, in which fewer proofs are identified. Though a “real” sequentialization theorem is missing, these proof nets have a grip on complexity issues. In both cases the cut elimination procedure is closely related to its equivalent in the calculus of structures.
L.: Constructing free Boolean categories
, 2005
"... By Boolean category we mean something which is to a Boolean algebra what a category is to a poset. We propose an axiomatic system for Boolean categories, which is different in several respects from the ones proposed recently. In particular everything is done from the start in a *autonomous category ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
By Boolean category we mean something which is to a Boolean algebra what a category is to a poset. We propose an axiomatic system for Boolean categories, which is different in several respects from the ones proposed recently. In particular everything is done from the start in a *autonomous category and not in a weakly distributive one, which simplifies issues like the Mix rule. An important axiom, which is introduced later, is a “graphical ” condition, which is closely related to denotational semantics and the Geometry of Interaction. Then we show that a previously
Reducing Nondeterminism in the Calculus of Structures
, 2005
"... The calculus of structures is a proof theoretical formalism which generalizes the sequent calculus with the feature of deep inference: in contrast to the sequent calculus, inference rules can be applied at any depth inside a formula, bringing shorter proofs than all other formalisms supporting a ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
The calculus of structures is a proof theoretical formalism which generalizes the sequent calculus with the feature of deep inference: in contrast to the sequent calculus, inference rules can be applied at any depth inside a formula, bringing shorter proofs than all other formalisms supporting analytical proofs. However, deep applicability of inference rules causes greater nondeterminism than in the sequent calculus regarding proof search. In this paper, we introduce a new technique which reduces nondeterminism without breaking proof theoretical properties, and provides a more immediate access to shorter proofs. We present our technique on system BV, the smallest technically nontrivial system in the calculus of structures, extending multiplicative linear logic with the rules mix, nullary mix and a self dual, noncommutative logical operator. Since our technique exploits a scheme common to all the systems in the calculus of structures, we argue that it generalizes to these systems for classical logic, linear logic and modal logics.
On the axiomatisation of boolean categories with and without medial
 THEORY APPL. CATEG
, 2007
"... ..."
Two Restrictions on Contraction
 Logic Journal of the IGPL
, 2002
"... I show two limitations of multiplicative (or contextindependent) sequent calculi: contraction can neither be restricted to atoms nor to the bottom of a proof tree. ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
I show two limitations of multiplicative (or contextindependent) sequent calculi: contraction can neither be restricted to atoms nor to the bottom of a proof tree.
On the specification of sequent systems
 IN LPAR 2005: 12TH INTERNATIONAL CONFERENCE ON LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE AND REASONING, NUMBER 3835 IN LNAI
, 2005
"... Recently, linear Logic has been used to specify sequent calculus proof systems in such a way that the proof search in linear logic can yield proof search in the specified logic. Furthermore, the metatheory of linear logic can be used to draw conclusions about the specified sequent calculus. For e ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
Recently, linear Logic has been used to specify sequent calculus proof systems in such a way that the proof search in linear logic can yield proof search in the specified logic. Furthermore, the metatheory of linear logic can be used to draw conclusions about the specified sequent calculus. For example, derivability of one proof system from another can be decided by a simple procedure that is implemented via bounded logic programmingstyle search. Also, simple and decidable conditions on the linear logic presentation of inference rules, called homogeneous and coherence, can be used to infer that the initial rules can be restricted to atoms and that cuts can be eliminated. In the present paper we introduce Llinda, a logical framework based on linear logic augmented with inference rules for definition (fixed points) and induction. In this way, the above properties can be proved entirely inside the framework. To further illustrate the power of Llinda, we extend the definition of coherence and provide a new, semiautomated proof of cutelimination for Girard’s Logic of Unicity (LU).
System BV without the Equalities for Unit
, 2004
"... System BV is an extension of multiplicative linear logic with a noncommutative selfdual operator. In this paper we present systems equivalent to system BV where equalities for unit are oriented from left to right and new structural rules are introduced to preserve completeness. ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
System BV is an extension of multiplicative linear logic with a noncommutative selfdual operator. In this paper we present systems equivalent to system BV where equalities for unit are oriented from left to right and new structural rules are introduced to preserve completeness.