Results 1  10
of
47
A system of interaction and structure
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2004
"... This paper introduces a logical system, called BV, which extends multiplicative linear logic by a noncommutative selfdual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, call ..."
Abstract

Cited by 87 (15 self)
 Add to MetaCart
This paper introduces a logical system, called BV, which extends multiplicative linear logic by a noncommutative selfdual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae subject to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new topdown symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allowing the design of BV, yield a modular proof of cut elimination.
On the Proof Complexity of Deep Inference
, 2000
"... We obtain two results about the proof complexity of deep inference: 1) deepinference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; 2) there are analytic deepinference proof systems that exhibit an exponential ..."
Abstract

Cited by 31 (13 self)
 Add to MetaCart
We obtain two results about the proof complexity of deep inference: 1) deepinference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; 2) there are analytic deepinference proof systems that exhibit an exponential speedup over analytic Gentzen proof systems that they polynomially simulate.
Atomic Cut Elimination for Classical Logic
 of Lecture Notes in Computer Science
, 2002
"... System SKS is a set of rules for classical propositional logic presented in the calculus of structures. Like sequent systems and unlike natural deduction systems, it has an explicit cut rule, which is admissible. ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
System SKS is a set of rules for classical propositional logic presented in the calculus of structures. Like sequent systems and unlike natural deduction systems, it has an explicit cut rule, which is admissible.
Exploring the gap between linear and classical logic
 Theory and Applications of Categories, 18:473–535
, 2006
"... Abstract. The Medial rule was first devised as a deduction rule in the Calculus of Structures. In this paper we explore it from the point of view of category theory, as additional structure on a ∗autonomous category. This gives us some insights on the denotational semantics of classical proposition ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
Abstract. The Medial rule was first devised as a deduction rule in the Calculus of Structures. In this paper we explore it from the point of view of category theory, as additional structure on a ∗autonomous category. This gives us some insights on the denotational semantics of classical propositional logic, and allows us to construct new models for it, based on suitable generalizations of the theory of coherence spaces. 1.
Deep Sequent Systems for Modal Logic
 ARCHIVE FOR MATHEMATICAL LOGIC
"... We see a systematic set of cutfree axiomatisations for all the basic normal modal logics formed by some combination the axioms d,t,b,4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the litera ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
We see a systematic set of cutfree axiomatisations for all the basic normal modal logics formed by some combination the axioms d,t,b,4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.
A Local System for Linear Logic
, 2002
"... In this paper I will present a deductive system for linear logic, in which all rules are local. In particular, the contraction rule is reduced to an atomic version, and there is no global promotion rule. In order to achieve this, it is necessary to depart from the sequent calculus and use the calcul ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
In this paper I will present a deductive system for linear logic, in which all rules are local. In particular, the contraction rule is reduced to an atomic version, and there is no global promotion rule. In order to achieve this, it is necessary to depart from the sequent calculus and use the calculus of structures, which is a generalization of the onesided sequent calculus. In a rule, premise and conclusion are not sequents, but structures, which are expressions that share properties of formulae and sequents.
A NonCommutative Extension of MELL
, 2002
"... We extend multiplicative exponential linear logic (MELL) by a noncommutative, selfdual logical operator. The extended system, called NEL, is defined in the formalism of the calculus of structures, which is a generalisation of the sequent calculus and provides a more refined analysis of proofs. We ..."
Abstract

Cited by 27 (12 self)
 Add to MetaCart
We extend multiplicative exponential linear logic (MELL) by a noncommutative, selfdual logical operator. The extended system, called NEL, is defined in the formalism of the calculus of structures, which is a generalisation of the sequent calculus and provides a more refined analysis of proofs. We should then be able to extend the range of applications of MELL, by modelling a broad notion of sequentiality and providing new properties of proofs. We show some proof theoretical results: decomposition and cut elimination. The new operator represents a significant challenge: to get our results we use here for the first time some novel techniques, which constitute a uniform and modular approach to cut elimination, contrary to what is possible in the sequent calculus.
Normalisation control in deep inference via atomic flows
, 2008
"... Abstract. We introduce ‘atomic flows’: they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a n ..."
Abstract

Cited by 23 (11 self)
 Add to MetaCart
Abstract. We introduce ‘atomic flows’: they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in deep inference, which is more general than other syntactic paradigms, and where normalisation is more difficult to control. We argue that atomic flows are a significant technical advance for normalisation theory, because 1) the technique they support is largely independent of syntax; 2) indeed, it is largely independent of logical inference rules; 3) they constitute a powerful geometric formalism, which is more intuitive than syntax. 1.
From proof nets to the free * autonomous category
 Logical Methods in Computer Science, 2(4:3):1–44, 2006. Available from: http://arxiv.org/abs/cs/0605054. [McK05] Richard McKinley. Classical categories and deep inference. In Structures and Deduction 2005 (Satellite Workshop of ICALP’05
, 2005
"... Vol. 2 (4:3) 2006, pp. 1–44 www.lmcsonline.org ..."
Reducing Nondeterminism in the Calculus of Structures
, 2005
"... The calculus of structures is a proof theoretical formalism which generalizes the sequent calculus with the feature of deep inference: in contrast to the sequent calculus, inference rules can be applied at any depth inside a formula, bringing shorter proofs than all other formalisms supporting a ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
The calculus of structures is a proof theoretical formalism which generalizes the sequent calculus with the feature of deep inference: in contrast to the sequent calculus, inference rules can be applied at any depth inside a formula, bringing shorter proofs than all other formalisms supporting analytical proofs. However, deep applicability of inference rules causes greater nondeterminism than in the sequent calculus regarding proof search. In this paper, we introduce a new technique which reduces nondeterminism without breaking proof theoretical properties, and provides a more immediate access to shorter proofs. We present our technique on system BV, the smallest technically nontrivial system in the calculus of structures, extending multiplicative linear logic with the rules mix, nullary mix and a self dual, noncommutative logical operator. Since our technique exploits a scheme common to all the systems in the calculus of structures, we argue that it generalizes to these systems for classical logic, linear logic and modal logics.