Results 1 
2 of
2
Diamonds are a Philosopher's Best Friends. The Knowability Paradox and Modal Epistemic Relevance Logic (Extended Abstract)
 Journal of Philosophical Logic
, 2002
"... Heinrich Wansing Dresden University of Technology The knowability paradox is an instance of a remarkable reasoning pattern (actually, a pair of such patterns), in the course of which an occurrence of the possibility operator, the diamond, disappears. In the present paper, it is pointed out how the ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Heinrich Wansing Dresden University of Technology The knowability paradox is an instance of a remarkable reasoning pattern (actually, a pair of such patterns), in the course of which an occurrence of the possibility operator, the diamond, disappears. In the present paper, it is pointed out how the unwanted disappearance of the diamond may be escaped. The emphasis is not laid on a discussion of the contentious premise of the knowability paradox, namely that all truths are possibly known, but on how from this assumption the conclusion is derived that all truths are, in fact, known. Nevertheless, the solution o#ered is in the spirit of the constructivist attitude usually maintained by defenders of the antirealist premise. In order to avoid the paradoxical reasoning, a paraconsistent constructive relevant modal epistemic logic with strong negation is defined semantically. The system is axiomatized and shown to be complete.
Implicit Programming and the Logic of Constructible Duality
"... ABSTRACT We present an investigation of duality in the traditional logical manner. We extend Nelson's symmetrization of intuitionistic logic, constructible falsity, to a selfdual logic constructible duality. We develop a selfdual model by considering an interval of worlds in an intuitionistic Kr ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
ABSTRACT We present an investigation of duality in the traditional logical manner. We extend Nelson's symmetrization of intuitionistic logic, constructible falsity, to a selfdual logic constructible duality. We develop a selfdual model by considering an interval of worlds in an intuitionistic Kripke model. The duality arises through how we judge truth and falsity. Truth is judged forward in the Kripke model, as in intuitionistic logic, while falsity is judged backwards. We develop a selfdual algebra such that every point in the algebra is representable by some formula in the logic. This algebra arises as an instantiation of a Heyting algebra into several categorical constructions. In particular, we show that this algebra is an instantiation of the Chu construction applied to a Heyting algebra, the second Dialectica construction applied to a Heyting algebra, and as an algebra for the study of recursion and corecursion. Thus the algebra provides a common base for these constructions, and suggests itself as an important part of any constructive logical treatment of duality. Implicit programming is suggested as a new paradigm for computing with constructible duality as its formal system. We show that all the operators that have computable least fixed points are definable explicitly and all operators with computable optimal fixed points are definable implicitly within constructible duality. Implicit programming adds a novel definitional mechanism that allows functions to be defined implicitly. This new programming feature is especially useful for programming with corecursively defined datatypes such as circular lists. iii DEDICATION To my cousin Jordan Lackey (19631995) whose courage with AIDS was an inspiration. iv