Results 1 
3 of
3
Deterministic Asynchronous Automata for Infinite Traces
 Acta Informatica
, 1993
"... This paper shows the equivalence between the family of recognizable languages over infinite traces and the family of languages which are recognized by deterministic asynchronous cellular Muller automata. We thus give a proper generalization of McNaughton's Theorem from infinite words to infinite tra ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
This paper shows the equivalence between the family of recognizable languages over infinite traces and the family of languages which are recognized by deterministic asynchronous cellular Muller automata. We thus give a proper generalization of McNaughton's Theorem from infinite words to infinite traces. Thereby we solve one of the main open problems in this field. As a special case we obtain that every closed (w.r.t. the independence relation) word language is accepted by some Idiamond deterministic Muller automaton. 1 Introduction A. Mazurkiewicz introduced the concept of traces as a suitable semantics for concurrent systems [Maz77]. A concurrent system is given by a set of atomic actions \Sigma = fa; b; c; : : :g together with an independence relation I ` \Sigma \Theta \Sigma, which specifies pairs of actions which can be performed concurrently. This leads to an equivalence relation on \Sigma generated by the independence relation I. More precisely, if a and b denote independent...
Kleene Coalgebra – an overview
"... Abstract. Coalgebras provide a uniform framework for the study of dynamical systems, including several types of automata. The coalgebraic view on systems has recently been proved relevant by the development of a number of expression calculi which generalize classical results by Kleene, on regular ex ..."
Abstract
 Add to MetaCart
Abstract. Coalgebras provide a uniform framework for the study of dynamical systems, including several types of automata. The coalgebraic view on systems has recently been proved relevant by the development of a number of expression calculi which generalize classical results by Kleene, on regular expressions, and by Kozen, on Kleene algebra. This note contains an overview of the motivation and results of the generic framework we developed – Kleene Coalgebra – to uniformly derive the aforementioned calculi. We present an historical overview of work on regular expressions and axiomatizations, as well a discussion of related work. We show applications of the framework to three types of probabilistic systems: simple Segala, stratified and PnueliZuck. 1