Results 1 
5 of
5
Efficient LowContention Parallel Algorithms
, 1996
"... The queueread, queuewrite (qrqw) parallel random access machine (pram) model permits concurrent reading and writing to shared memory locations, but at a cost proportional to the number of readers/writers to any one memory location in a given step. The qrqw pram model re ects the contention propert ..."
Abstract

Cited by 34 (14 self)
 Add to MetaCart
The queueread, queuewrite (qrqw) parallel random access machine (pram) model permits concurrent reading and writing to shared memory locations, but at a cost proportional to the number of readers/writers to any one memory location in a given step. The qrqw pram model re ects the contention properties of most commercially available parallel machines more accurately than either the wellstudied crcw pram or erew pram models, and can be e ciently emulated with only logarithmic slowdown on hypercubetype noncombining networks. This paper describes fast, lowcontention, workoptimal, randomized qrqw pram algorithms for the fundamental problems of load balancing, multiple compaction, generating a random permutation, parallel hashing, and distributive sorting. These logarithmic or sublogarithmic time algorithms considerably improve upon the best known erew pram algorithms for these problems, while avoiding the highcontention steps typical of crcw pram algorithms. An illustrative experiment demonstrates the performance advantage of a new qrqw random permutation algorithm when compared with the popular erew algorithm. Finally, this paper presents new randomized algorithms for integer sorting and general sorting.
On Parallel Hashing and Integer Sorting
, 1991
"... The problem of sorting n integers from a restricted range [1::m], where m is superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = n polylog(n) we have an O(n log log n) algorithm.) The al ..."
Abstract

Cited by 30 (8 self)
 Add to MetaCart
The problem of sorting n integers from a restricted range [1::m], where m is superpolynomial in n, is considered. An o(n log n) randomized algorithm is given. Our algorithm takes O(n log log m) expected time and O(n) space. (Thus, for m = n polylog(n) we have an O(n log log n) algorithm.) The algorithm is parallelizable. The resulting parallel algorithm achieves optimal speed up. Some features of the algorithm make us believe that it is relevant for practical applications. A result of independent interest is a parallel hashing technique. The expected construction time is logarithmic using an optimal number of processors, and searching for a value takes O(1) time in the worst case. This technique enables drastic reduction of space requirements for the price of using randomness. Applicability of the technique is demonstrated for the parallel sorting algorithm, and for some parallel string matching algorithms. The parallel sorting algorithm is designed for a strong and non standard mo...
The QueueRead QueueWrite Asynchronous PRAM Model
 EuroPar'96 Parallel Processing, Lecture Notes in Computer Science
, 1998
"... This paper presents results for the queueread, queuewrite asynchronous parallel random access machine (qrqw asynchronous pram) model, which is the asynchronous variant of the qrqw pram model. The qrqw pram family of models, which was introduced earlier by the authors, permit concurrent reading ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
This paper presents results for the queueread, queuewrite asynchronous parallel random access machine (qrqw asynchronous pram) model, which is the asynchronous variant of the qrqw pram model. The qrqw pram family of models, which was introduced earlier by the authors, permit concurrent reading and writing to shared memory locations, but each memory location is viewed as having a queue which can service at most one request at a time. In the basic qrqw pram model each processor executes a series of reads to shared memory locations, a series of local computation steps, and a series of writes to shared memory locations, and then synchronizes with all other processors; thus this can be viewed as a bulksynchronous model. In contrast, in the qrqw asynchronous pram model discussed in this paper, there is no imposed bulksynchronization between processors, and each processor proceeds at its own pace. Thus, the qrqw asynchronous pram serves as a better model for designing and analyz...
Thinking in parallel: Some basic dataparallel algorithms and techniques
 In use as class notes since
, 1993
"... Copyright 19922009, Uzi Vishkin. These class notes reflect the theorertical part in the Parallel ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
(Show Context)
Copyright 19922009, Uzi Vishkin. These class notes reflect the theorertical part in the Parallel
A Note on Reducing Parallel Model Simulations to Integer Sorting
, 1995
"... We show that simulating a step of a fetch&add pram model on an erew pram model can be made as efficient as integer sorting. In particular, we present several efficient reductions of the simulation problem to various integer sorting problems. By using some recent algorithms for integer sorting, w ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
We show that simulating a step of a fetch&add pram model on an erew pram model can be made as efficient as integer sorting. In particular, we present several efficient reductions of the simulation problem to various integer sorting problems. By using some recent algorithms for integer sorting, we get simulation algorithms on crew and erew that take o(n lg n) operations where n is the number of processors in the simulated crcw machine. Previous simulations were using \Theta(n lg n) operations. Some of the more interesting simulation results are obtained by using a bootstrapping technique with a crcw pram algorithm for hashing. 1 Introduction The concurrentread concurrentwrite (crcw) pram programmer's model is commonly used for designing parallel algorithms. On the other hand, the weaker exclusivewrite pram models are sometimes considered closer to realization. Therefore, while it is more convenient to design algorithms for the stronger crcw model, an extra effort is sometimes neede...