Results 11  20
of
67
A Constructive Enumeration of Fullerenes
"... In this paper, a fast and complete method to enumerate fullerene structures is given. It is based on a topdown approach, and it is fast enough to generate, for example, all 1812 isomers of C 60 in less than 20 seconds on an SGIworkstation. The method described can easily be generalised for 3regul ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
In this paper, a fast and complete method to enumerate fullerene structures is given. It is based on a topdown approach, and it is fast enough to generate, for example, all 1812 isomers of C 60 in less than 20 seconds on an SGIworkstation. The method described can easily be generalised for 3regular spherical maps with no face having more than 6 edges in its boundary.
On the Complexity of Optimization Problems for 3Dimensional Convex Polyhedra and Decision Trees
 Comput. Geom. Theory Appl
, 1995
"... We show that several wellknown optimization problems involving 3dimensional convex polyhedra and decision trees are NPhard or NPcomplete. One of the techniques we employ is a lineartime method for realizing a planar 3connected triangulation as a convex polyhedron, which may be of independent i ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
We show that several wellknown optimization problems involving 3dimensional convex polyhedra and decision trees are NPhard or NPcomplete. One of the techniques we employ is a lineartime method for realizing a planar 3connected triangulation as a convex polyhedron, which may be of independent interest. Key words: Convex polyhedra, approximation, Steinitz's theorem, planar graphs, art gallery theorems, decision trees. 1 Introduction Convex polyhedra are fundamental geometric structures (e.g., see [20]). They are the product of convex hull algorithms, and are key components for problems in robot motion planning and computeraided geometric design. Moreover, due to a beautiful theorem of Steinitz [20, 38], they provide a strong link between computational geometry and graph theory, for Steinitz shows that a graph forms the edge structure of a convex polyhedra if and only if it is planar and 3connected. Unfortunately, algorithmic problems dealing with 3dimensional convex polyhedra ...
BASIC PROPERTIES OF CONVEX POLYTOPES
, 1997
"... Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their importance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry (toric varieties) ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by their importance for many other mathematical subjects, ranging from integration theory, algebraic topology, and algebraic geometry (toric varieties) to linear and combinatorial
Enumeration and random realization of triangulated surfaces.arXiv:math.CO
"... We give a complete enumeration of triangulated surfaces with 9 and 10 vertices. Moreover, we discuss how geometric realizations of orientable surfaces with few vertices can be obtained by choosing coordinates randomly. 1 ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
We give a complete enumeration of triangulated surfaces with 9 and 10 vertices. Moreover, we discuss how geometric realizations of orientable surfaces with few vertices can be obtained by choosing coordinates randomly. 1
Realization Spaces of 4Polytopes are Universal
 BULL. AMER. MATH. SOC
, 1995
"... Let P be a ddimensional polytope. The realization space of P is the space of all polytopes P # that are combinatorially equivalent to P , modulo affine transformations. We report ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
Let P be a ddimensional polytope. The realization space of P is the space of all polytopes P # that are combinatorially equivalent to P , modulo affine transformations. We report
Variational Principles for Circle Patterns
, 2003
"... A Delaunay cell decomposition of a surface with constant curvature gives rise to a circle pattern, consisting of the circles which are circumscribed to the facets. We treat the problem whether there exists a Delaunay cell decomposition for a given (topological) cell decomposition and given interse ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
A Delaunay cell decomposition of a surface with constant curvature gives rise to a circle pattern, consisting of the circles which are circumscribed to the facets. We treat the problem whether there exists a Delaunay cell decomposition for a given (topological) cell decomposition and given intersection angles of the circles, whether it is unique and how it may be constructed. Somewhat more generally, we allow conelike singularities in the centers and intersection points of the circles. We prove existence and uniqueness theorems for the solution of the circle pattern problem using a variational principle. The functionals (one for the euclidean, one for the hyperbolic case) are convex functions of the radii of the circles. The critical points correspond to solutions of the circle pattern problem. The analogous functional for the spherical case is not convex, hence this case is treated by stereographic projection to the plane. From the existence and uniqueness of circle patterns in the sphere, we derive a strengthened version of Steinitz’ theorem on the geometric realizability of abstract polyhedra. We derive the
Some Algorithmic Problems in Polytope Theory
 IN ALGEBRA, GEOMETRY, AND SOFTWARE SYSTEMS
, 2003
"... Convex polytopes, i.e.. the intersections of finitely many closed affine halfspaces in R^d, are important objects in various areas of mathematics and other disciplines. In particular, the compact... ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Convex polytopes, i.e.. the intersections of finitely many closed affine halfspaces in R^d, are important objects in various areas of mathematics and other disciplines. In particular, the compact...
Reconfiguring Convex Polygons
, 2000
"... We prove that there is a motion from any convex polygon to any convex polygon with the same counterclockwise sequence of edge lengths, that preserves the lengths of the edges, and keeps the polygon convex at all times. Furthermore, the motion is \direct" (avoiding any intermediate canonical congu ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
We prove that there is a motion from any convex polygon to any convex polygon with the same counterclockwise sequence of edge lengths, that preserves the lengths of the edges, and keeps the polygon convex at all times. Furthermore, the motion is \direct" (avoiding any intermediate canonical conguration like a subdivided triangle) in the sense that each angle changes monotonically throughout the motion. In contrast, we show that it is impossible to achieve such a result with each vertextovertex distance changing monotonically. We also demonstrate that there is a motion between any two such polygons using threedimensional moves known as pivots, although the complexity of the motion cannot be bounded as a function of the number of vertices in the polygon. 1
OutputSensitive Reporting of Disjoint Paths
, 1996
"... A kpath query on a graph consists of computing k vertexdisjoint paths between two given vertices of the graph, whenever they exist. In this paper, we study the problem of performing kpath queries, with k < 3, in a graph G with n vertices. We denote with the total length of the paths reported. For ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
A kpath query on a graph consists of computing k vertexdisjoint paths between two given vertices of the graph, whenever they exist. In this paper, we study the problem of performing kpath queries, with k < 3, in a graph G with n vertices. We denote with the total length of the paths reported. For k < 3, we present an optimal data structure for G that uses O(n) space and executes kpath queries in outputsensitive O() time. For triconnected planar graphs, our results make use of a new combinatorial structure that plays the same role as bipolar (st) orientations for biconnected planar graphs. This combinatorial structure also yields an alternative construction of convex grid drawings of triconnected planar graphs.
Graphs and partially ordered sets: recent results and new directions
 JACOBSON (EDS.), SURVEYS IN GRAPH THEORY, CONGRESSUS NUMERANTIUM
, 1996
"... We survey some recent research progress on topics linking graphs and finite partially ordered sets. Among these topics are planar graphs, hamiltonian cycles and paths, graph and hypergraph coloring, online algorithms, intersection graphs, inclusion orders, random methods and ramsey theory. In each ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
We survey some recent research progress on topics linking graphs and finite partially ordered sets. Among these topics are planar graphs, hamiltonian cycles and paths, graph and hypergraph coloring, online algorithms, intersection graphs, inclusion orders, random methods and ramsey theory. In each case, we discuss open problems and future research directions.