Results 1 
4 of
4
Unfolding finitist arithmetic
, 2010
"... The concept of the (full) unfolding U(S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significan ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
The concept of the (full) unfolding U(S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significance was previously carried out for a system of nonfinitist arithmetic, NFA; it was shown that U(NFA) is prooftheoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system of finitist arithmetic, FA, and for an extension of that by a form BR of the socalled Bar Rule. It is shown that U(FA) and U(FA + BR) are prooftheoretically equivalent, respectively, to Primitive Recursive Arithmetic, PRA, and to Peano Arithmetic, PA.
Arithmetic and the Incompleteness Theorems
, 2000
"... this paper please consult me first, via my home page. ..."
Gödel on Intuition and on Hilbert’s finitism
"... There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the con ..."
Abstract
 Add to MetaCart
There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the contrary, Gödel’s writings represent a smooth evolution, with just one rather small doublereversal, of his view of finitism. He used the term “finit ” (in German) or “finitary ” or “finitistic ” primarily to refer to Hilbert’s conception of finitary mathematics. On two occasions (only, as far as I know), the lecture notes for his lecture at Zilsel’s [Gödel, 1938a] and the lecture notes for a lecture at Yale [Gödel, *1941], he used it in a way that he knew—in the second case, explicitly—went beyond what Hilbert meant. Early in his career, he believed that finitism (in Hilbert’s sense) is openended, in the sense that no correct formal system can be known to formalize all finitist proofs and, in particular, all possible finitist proofs of consistency of firstorder number theory, P A; but starting in the Dialectica paper