Results 1 
4 of
4
Disunification: a Survey
 Computational Logic: Essays in Honor of Alan
, 1991
"... Solving an equation in an algebra of terms is known as unification. Solving more complex formulas combining equations and involving in particular negation is called disunification. With such a broad definition, many works fall into the scope of disunification. The goal of this paper is to survey the ..."
Abstract

Cited by 57 (9 self)
 Add to MetaCart
Solving an equation in an algebra of terms is known as unification. Solving more complex formulas combining equations and involving in particular negation is called disunification. With such a broad definition, many works fall into the scope of disunification. The goal of this paper is to survey these works and bring them together in a same framework. R'esum'e On appelle habituellement (algorithme d') unification un algorithme de r'esolution d'une 'equation dans une alg`ebre de termes. La r'esolution de formules plus complexes, comportant en particulier des n'egations, est appel'ee ici disunification. Avec une d'efinition aussi 'etendue, de nombreux travaux peuvent etre consid'er'es comme portant sur la disunification. L'objet de cet article de synth`ese est de rassembler tous ces travaux dans un meme formalisme. Laboratoire de Recherche en Informatique, Bat. 490, Universit'e de ParisSud, 91405 ORSAY cedex, France. Email: comon@lri.lri.fr i Contents 1 Syntax 5 1.1 Basic Defini...
What's so special about Kruskal's Theorem AND THE ORDINAL Γ0? A SURVEY OF SOME RESULTS IN PROOF THEORY
 ANNALS OF PURE AND APPLIED LOGIC, 53 (1991), 199260
, 1991
"... This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, an ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Kruskal’s tree theorem, and in particular the connection with the ordinal Γ0. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Veblen hierarchies, some subsystems of secondorder logic, slowgrowing and fastgrowing hierarchies including Girard’s result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to Kruskal, the “tree theorem”, as well as a “finite miniaturization ” of Kruskal’s theorem due to Harvey Friedman. These versions of Kruskal’s theorem are remarkable from a prooftheoretic point of view because they are not provable in relatively strong logical systems. They are examples of socalled “natural independence phenomena”, which are considered by most logicians as more natural than the metamathematical incompleteness results first discovered by Gödel. Kruskal’s tree theorem also plays a fundamental role in computer science, because it is one of the main tools for showing that certain orderings on trees are well founded. These orderings play a crucial role in proving the termination of systems of rewrite rules and the correctness of KnuthBendix completion procedures. There is also a close connection between a certain infinite countable ordinal called Γ0 and Kruskal’s theorem. Previous definitions of the function involved in this connection are known to be incorrect, in that, the function is not monotonic. We offer a repaired definition of this function, and explore briefly the consequences of its existence.
Compiling Pattern Matching by Term Decomposition
, 1989
"... We present a method for compiling pattern matching on lazy languages based on previous work by Laville and HuetLevy. It consists of coding ambiguous linear sets of patterns using "Term Decomposition," and producing non ambiguous sets over terms with structural constraints on variables. The method c ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
We present a method for compiling pattern matching on lazy languages based on previous work by Laville and HuetLevy. It consists of coding ambiguous linear sets of patterns using "Term Decomposition," and producing non ambiguous sets over terms with structural constraints on variables. The method can also be applied to strict languages giving a match algorithm that includes only unavoidable tests when such an algorithm exists.