Results 1 
6 of
6
Gödel on computability
"... Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of the second theorem was explicitly based on Turing’s 1936 reduction of finite procedures to machine computations. Turing gave in his 1954 an understated analysis of finite procedures in terms of Post production systems. This analysis, prima facie quite different from that given in 1936, served as the basis for an exposition of various unsolvable problems. Turing had addressed issues of mentality and intelligence in contemporaneous essays, the best known of which is of course Computing machinery and intelligence. Gödel’s and Turing’s considerations from this period intersect through their attempt, on the one hand, to analyze finite, mechanical procedures and, on the other hand, to approach mental phenomena in a scientific way. Neuroscience or brain science was an important component of the latter for both: Gödel’s remarks in the Gibbs Lecture as well as in his later conversations with Wang and Turing’s Intelligent Machinery can serve as clear evidence for that. 2 Both men were convinced that some mental processes are not mechanical, in the sense that Turing machines cannot mimic them. For Gödel, such processes were to be found in mathematical experience and he was led to the conclusion that mind is separate from matter. Turing simply noted that for a machine or a brain it is not enough to be converted into a universal (Turing) machine in order to become intelligent: “discipline”, the characteristic
Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert’s program
"... The correspondence between Paul Bernays and Kurt Gödel is one of the most extensive in the two volumes of Gödel’s collected works devoted to his letters of (primarily) scientific, philosophical and historical interest. It ranges from 1930 to 1975 and deals with a rich body of logical and philosophic ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The correspondence between Paul Bernays and Kurt Gödel is one of the most extensive in the two volumes of Gödel’s collected works devoted to his letters of (primarily) scientific, philosophical and historical interest. It ranges from 1930 to 1975 and deals with a rich body of logical and philosophical issues, including the incompleteness theorems, finitism, constructivity, set theory, the philosophy of mathematics, and postKantian philosophy, and contains Gödel’s thoughts on many topics that are not expressed elsewhere. In addition, it testifies to their lifelong warm personal relationship. I have given a detailed synopsis of the Bernays Gödel correspondence, with explanatory background, in my introductory note to it in Vol. IV of Gödel’s Collected Works, pp. 4179. 1 My purpose here is to focus on only one group of interrelated topics from these exchanges, namely the light that it⎯together with assorted published and unpublished articles and lectures by Gödel⎯throws on his perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert’s program. 2 In that connection, this piece has an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end of his career. 1 The five volumes of Gödel’s Collected Works (19862003) are referred to below, respectively, as CW I,
History of Constructivism in the 20th Century
"... notions, such as `constructive proof', `arbitrary numbertheoretic function ' are rejected. Statements involving quantifiers are finitistically interpreted in terms of quantifierfree statements. Thus an existential statement 9xAx is regarded as a partial communication, to be supplemented by providi ..."
Abstract
 Add to MetaCart
notions, such as `constructive proof', `arbitrary numbertheoretic function ' are rejected. Statements involving quantifiers are finitistically interpreted in terms of quantifierfree statements. Thus an existential statement 9xAx is regarded as a partial communication, to be supplemented by providing an x which satisfies A. Establishing :8xAx finitistically means: providing a particular x such that Ax is false. In this century, T. Skolem 4 was the first to contribute substantially to finitist 4 Thoralf Skolem 18871963 History of constructivism in the 20th century 3 mathematics; he showed that a fair part of arithmetic could be developed in a calculus without bound variables, and with induction over quantifierfree expressions only. Introduction of functions by primitive recursion is freely allowed (Skolem 1923). Skolem does not present his results in a formal context, nor does he try to delimit precisely the extent of finitist reasoning. Since the idea of finitist reasoning ...