Results 1 
3 of
3
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.
Reason and intuition
 Synthese
, 2000
"... In this paper I will approach the subject of intuition from a different angle from what has been usual in the philosophy of mathematics, by beginning with some descriptive remarks about Reason and observing that something that has been called intuition arises naturally in that context. These conside ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this paper I will approach the subject of intuition from a different angle from what has been usual in the philosophy of mathematics, by beginning with some descriptive remarks about Reason and observing that something that has been called intuition arises naturally in that context. These considerations are quite general, not specific to mathematics. The conception of intuition might be called that of rational intuition; indeed the conception is a much more modest version of conceptions of intuition held by rationalist philosophers. Moreover, it answers to a quite widespread use of the word “intuition ” in philosophy and elsewhere. But it does not obviously satisfy conditions associated with other conceptions of intuition that have been applied to mathematics. Intuition in a sense like this has, in writing about mathematics, repeatedly been run together with intuition in other senses. In the last part of the paper a little will be said about the connections that give rise to this phenomenon. * An abridgement of an earlier version of this paper was presented to a session on Mathematical Intuition at the 20th World Congress of Philosophy in
Only up to isomorphism? Category theory and the . . .
"... Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can ..."
Abstract
 Add to MetaCart
Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can be made for its logical and conceptual autonomy. Its justificatory autonomy turns on whether the objects of a foundation for mathematics should be specified only up to isomorphism, as is customary in other branches of contemporary mathematics. If such a specification suffices, then a categorytheoretical approach will be highly appropriate. But if sets have a richer ‘nature ’ than is preserved under isomorphism, then such an approach will be inadequate.